Files
lammps/lib/colvars/colvar_UIestimator.h
Giacomo Fiorin 1220bea011 Update Colvars to version 2022-05-09
This update includes one new feature (neural-network based collective
variables), several small enhancements (including an automatic definition of
grid boundaries for angle-based CVs, and a normalization option for
eigenvector-based CVs), bugfixes and documentation improvements.

Usage information for specific features included in the Colvars library
(i.e. not just the library as a whole) is now also reported to the screen or
LAMMPS logfile (as is done already in other LAMMPS classes).

Notable to LAMMPS code development are the removals of duplicated code and of
ambiguously-named preprocessor defines in the Colvars headers.  Since the
last PR, the existing regression tests have also been running automatically
via GitHub Actions.

The following pull requests in the Colvars repository are relevant to LAMMPS:

- 475 Remove fatal error condition
  https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin)

- 474 Allow normalizing eigenvector vector components to deal with unit change
  https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin)

- 470 Better error handling in the initialization of NeuralNetwork CV
  https://github.com/Colvars/colvars/pull/470 (@HanatoK)

- 468 Add examples of histogram configuration, with and without explicit grid parameters
  https://github.com/Colvars/colvars/pull/468 (@giacomofiorin)

- 464 Fix #463 using more fine-grained features
  https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin)

- 447 [RFC] New option "scaledBiasingForce" for colvarbias
  https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin)

- 444 [RFC] Implementation of dense neural network as CV
  https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin)

- 443 Fix explicit gradient dependency of sub-CVs
  https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin)

- 442 Persistent bias count
  https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin)

- 437 Return type of bias from scripting interface
  https://github.com/Colvars/colvars/pull/437 (@giacomofiorin)

- 434 More flexible use of boundaries from colvars by grids
  https://github.com/Colvars/colvars/pull/434 (@jhenin)

- 433 Prevent double-free in linearCombination
  https://github.com/Colvars/colvars/pull/433 (@HanatoK)

- 428 More complete documentation for index file format (NDX)
  https://github.com/Colvars/colvars/pull/428 (@giacomofiorin)

- 426 Integrate functional version of backup_file() into base proxy class
  https://github.com/Colvars/colvars/pull/426 (@giacomofiorin)

- 424 Track CVC inheritance when documenting feature usage
  https://github.com/Colvars/colvars/pull/424 (@giacomofiorin)

- 419 Generate citation report while running computations
  https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin)

- 415 Rebin metadynamics bias from explicit hills when available
  https://github.com/Colvars/colvars/pull/415 (@giacomofiorin)

- 312 Ignore a keyword if it has content to the left of it (regardless of braces)
  https://github.com/Colvars/colvars/pull/312 (@giacomofiorin)

Authors: @giacomofiorin, @HanatoK, @jhenin
2022-05-10 11:24:54 -04:00

735 lines
29 KiB
C++

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#ifndef COLVAR_UIESTIMATOR_H
#define COLVAR_UIESTIMATOR_H
#include <cmath>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
#include <typeinfo>
// only for colvar module!
// when integrated into other code, just remove this line and "...cvm::backup_file(...)"
#include "colvarmodule.h"
namespace UIestimator {
const int Y_SIZE = 21; // defines the range of extended CV with respect to a given CV
// For example, CV=10, width=1, Y_SIZE=21, then eCV=[0-20], having a size of 21
const int HALF_Y_SIZE = 10;
const int EXTENDED_X_SIZE = HALF_Y_SIZE;
const double EPSILON = 0.000001; // for comparison of float numbers
class n_matrix { // Stores the distribution matrix of n(x,y)
public:
n_matrix() {}
n_matrix(const std::vector<double> & lowerboundary_input, // lowerboundary of x
const std::vector<double> & upperboundary_input, // upperboundary of
const std::vector<double> & width_input, // width of x
const int y_size_input) { // size of y, for example, ysize=7, then when x=1, the distribution of y in [-2,4] is considered
int i;
this->lowerboundary = lowerboundary_input;
this->upperboundary = upperboundary_input;
this->width = width_input;
this->dimension = lowerboundary_input.size();
this->y_size = y_size_input; // keep in mind the internal (spare) matrix is stored in diagonal form
this->y_total_size = int(cvm::pow(double(y_size_input), double(dimension)) + EPSILON);
// the range of the matrix is [lowerboundary, upperboundary]
x_total_size = 1;
for (i = 0; i < dimension; i++) {
x_size.push_back(int((upperboundary_input[i] - lowerboundary_input[i]) / width_input[i] + EPSILON));
x_total_size *= x_size[i];
}
// initialize the internal matrix
matrix.reserve(x_total_size);
for (i = 0; i < x_total_size; i++) {
matrix.push_back(std::vector<int>(y_total_size, 0));
}
temp.resize(dimension);
}
int get_value(const std::vector<double> & x, const std::vector<double> & y) {
return matrix[convert_x(x)][convert_y(x, y)];
}
void set_value(const std::vector<double> & x, const std::vector<double> & y, const int value) {
matrix[convert_x(x)][convert_y(x,y)] = value;
}
void increase_value(const std::vector<double> & x, const std::vector<double> & y, const int value) {
matrix[convert_x(x)][convert_y(x,y)] += value;
}
private:
std::vector<double> lowerboundary;
std::vector<double> upperboundary;
std::vector<double> width;
int dimension;
std::vector<int> x_size; // the size of x in each dimension
int x_total_size; // the size of x of the internal matrix
int y_size; // the size of y in each dimension
int y_total_size; // the size of y of the internal matrix
std::vector<std::vector<int> > matrix; // the internal matrix
std::vector<int> temp; // this vector is used in convert_x and convert_y to save computational resource
int convert_x(const std::vector<double> & x) { // convert real x value to its interal index
int i, j;
for (i = 0; i < dimension; i++) {
temp[i] = int((x[i] - lowerboundary[i]) / width[i] + EPSILON);
}
int index = 0;
for (i = 0; i < dimension; i++) {
if (i + 1 < dimension) {
int x_temp = 1;
for (j = i + 1; j < dimension; j++)
x_temp *= x_size[j];
index += temp[i] * x_temp;
}
else
index += temp[i];
}
return index;
}
int convert_y(const std::vector<double> & x, const std::vector<double> & y) { // convert real y value to its interal index
int i;
for (i = 0; i < dimension; i++) {
temp[i] = int(round((round(y[i] / width[i] + EPSILON) - round(x[i] / width[i] + EPSILON)) + (y_size - 1) / 2 + EPSILON));
}
int index = 0;
for (i = 0; i < dimension; i++) {
if (i + 1 < dimension)
index += temp[i] * int(cvm::pow(double(y_size), double(dimension - i - 1)) + EPSILON);
else
index += temp[i];
}
return index;
}
double round(double r) {
return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
}
};
// vector, store the sum_x, sum_x_square, count_y
template <typename T>
class n_vector {
public:
n_vector() {}
n_vector(const std::vector<double> & lowerboundary_input, // lowerboundary of x
const std::vector<double> & upperboundary_input, // upperboundary of
const std::vector<double> & width_input, // width of x
const int y_size_input, // size of y, for example, ysize=7, then when x=1, the distribution of y in [-2,4] is considered
const T & default_value) { // the default value of T
this->width = width_input;
this->dimension = lowerboundary_input.size();
x_total_size = 1;
for (int i = 0; i < dimension; i++) {
this->lowerboundary.push_back(lowerboundary_input[i] - (y_size_input - 1) / 2 * width_input[i] - EPSILON);
this->upperboundary.push_back(upperboundary_input[i] + (y_size_input - 1) / 2 * width_input[i] + EPSILON);
x_size.push_back(int((this->upperboundary[i] - this->lowerboundary[i]) / this->width[i] + EPSILON));
x_total_size *= x_size[i];
}
// initialize the internal vector
vector.resize(x_total_size, default_value);
temp.resize(dimension);
}
T & get_value(const std::vector<double> & x) {
return vector[convert_x(x)];
}
void set_value(const std::vector<double> & x, const T value) {
vector[convert_x(x)] = value;
}
void increase_value(const std::vector<double> & x, const T value) {
vector[convert_x(x)] += value;
}
private:
std::vector<double> lowerboundary;
std::vector<double> upperboundary;
std::vector<double> width;
int dimension;
std::vector<int> x_size; // the size of x in each dimension
int x_total_size; // the size of x of the internal matrix
std::vector<T> vector; // the internal vector
std::vector<int> temp; // this vector is used in convert_x and convert_y to save computational resource
int convert_x(const std::vector<double> & x) { // convert real x value to its interal index
int i, j;
for (i = 0; i < dimension; i++) {
temp[i] = int((x[i] - lowerboundary[i]) / width[i] + EPSILON);
}
int index = 0;
for (i = 0; i < dimension; i++) {
if (i + 1 < dimension) {
int x_temp = 1;
for (j = i + 1; j < dimension; j++)
x_temp *= x_size[j];
index += temp[i] * x_temp;
}
else
index += temp[i];
}
return index;
}
};
class UIestimator { // the implemension of UI estimator
public:
UIestimator() {}
//called when (re)start an eabf simulation
UIestimator(const std::vector<double> & lowerboundary_input,
const std::vector<double> & upperboundary_input,
const std::vector<double> & width_input,
const std::vector<double> & krestr_input, // force constant in eABF
const std::string & output_filename_input, // the prefix of output files
const int output_freq_input,
const bool restart_input, // whether restart from a .count and a .grad file
const std::vector<std::string> & input_filename_input, // the prefixes of input files
const double temperature_input) {
// initialize variables
this->lowerboundary = lowerboundary_input;
this->upperboundary = upperboundary_input;
this->width = width_input;
this->krestr = krestr_input;
this->output_filename = output_filename_input;
this->output_freq = output_freq_input;
this->restart = restart_input;
this->input_filename = input_filename_input;
this->temperature = temperature_input;
int i, j;
dimension = lowerboundary.size();
for (i = 0; i < dimension; i++) {
sum_x.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
sum_x_square.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
x_av.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
sigma_square.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
}
count_y = n_vector<int>(lowerboundary, upperboundary, width, Y_SIZE, 0);
distribution_x_y = n_matrix(lowerboundary, upperboundary, width, Y_SIZE);
grad = n_vector<std::vector<double> >(lowerboundary, upperboundary, width, 1, std::vector<double>(dimension, 0.0));
count = n_vector<int>(lowerboundary, upperboundary, width, 1, 0);
written = false;
written_1D = false;
if (dimension == 1) {
std::vector<double> upperboundary_temp = upperboundary;
upperboundary_temp[0] = upperboundary[0] + width[0];
oneD_pmf = n_vector<double>(lowerboundary, upperboundary_temp, width, 1, 0.0);
}
if (restart == true) {
input_grad = n_vector<std::vector<double> >(lowerboundary, upperboundary, width, 1, std::vector<double>(dimension, 0.0));
input_count = n_vector<int>(lowerboundary, upperboundary, width, 1, 0);
// initialize input_Grad and input_count
// the loop_flag is a n-dimensional vector, increae from lowerboundary to upperboundary when looping
std::vector<double> loop_flag(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i];
}
i = 0;
while (i >= 0) {
for (j = 0; j < dimension; j++) {
input_grad.set_value(loop_flag, std::vector<double>(dimension,0));
}
input_count.set_value(loop_flag, 0);
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag[i] += width[i];
if (loop_flag[i] > upperboundary[i] - width[i] + EPSILON) {
loop_flag[i] = lowerboundary[i];
i--;
}
else
break;
}
}
read_inputfiles(input_filename);
}
}
~UIestimator() {}
// called from MD engine every step
bool update(cvm::step_number /* step */,
std::vector<double> x, std::vector<double> y) {
int i;
for (i = 0; i < dimension; i++) {
// for dihedral RC, it is possible that x = 179 and y = -179, should correct it
// may have problem, need to fix
if (x[i] > 150 && y[i] < -150) {
y[i] += 360;
}
if (x[i] < -150 && y[i] > 150) {
y[i] -= 360;
}
if (x[i] < lowerboundary[i] - EXTENDED_X_SIZE * width[i] + EPSILON || x[i] > upperboundary[i] + EXTENDED_X_SIZE * width[i] - EPSILON \
|| y[i] - x[i] < -HALF_Y_SIZE * width[i] + EPSILON || y[i] - x[i] > HALF_Y_SIZE * width[i] - EPSILON \
|| y[i] - lowerboundary[i] < -HALF_Y_SIZE * width[i] + EPSILON || y[i] - upperboundary[i] > HALF_Y_SIZE * width[i] - EPSILON)
return false;
}
for (i = 0; i < dimension; i++) {
sum_x[i].increase_value(y, x[i]);
sum_x_square[i].increase_value(y, x[i] * x[i]);
}
count_y.increase_value(y, 1);
for (i = 0; i < dimension; i++) {
// adapt colvars precision
if (x[i] < lowerboundary[i] + EPSILON || x[i] > upperboundary[i] - EPSILON)
return false;
}
distribution_x_y.increase_value(x, y, 1);
return true;
}
// update the output_filename
void update_output_filename(const std::string& filename) {
output_filename = filename;
}
private:
std::vector<n_vector<double> > sum_x; // the sum of x in each y bin
std::vector<n_vector<double> > sum_x_square; // the sum of x in each y bin
n_vector<int> count_y; // the distribution of y
n_matrix distribution_x_y; // the distribution of <x, y> pair
int dimension;
std::vector<double> lowerboundary;
std::vector<double> upperboundary;
std::vector<double> width;
std::vector<double> krestr;
std::string output_filename;
int output_freq;
bool restart;
std::vector<std::string> input_filename;
double temperature;
n_vector<std::vector<double> > grad;
n_vector<int> count;
n_vector<double> oneD_pmf;
n_vector<std::vector<double> > input_grad;
n_vector<int> input_count;
// used in double integration
std::vector<n_vector<double> > x_av;
std::vector<n_vector<double> > sigma_square;
bool written;
bool written_1D;
public:
// calculate gradients from the internal variables
void calc_pmf() {
int norm;
int i, j, k;
std::vector<double> loop_flag(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i] - HALF_Y_SIZE * width[i];
}
i = 0;
while (i >= 0) {
norm = count_y.get_value(loop_flag) > 0 ? count_y.get_value(loop_flag) : 1;
for (j = 0; j < dimension; j++) {
x_av[j].set_value(loop_flag, sum_x[j].get_value(loop_flag) / norm);
sigma_square[j].set_value(loop_flag, sum_x_square[j].get_value(loop_flag) / norm - x_av[j].get_value(loop_flag) * x_av[j].get_value(loop_flag));
}
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag[i] += width[i];
if (loop_flag[i] > upperboundary[i] + HALF_Y_SIZE * width[i] - width[i] + EPSILON) {
loop_flag[i] = lowerboundary[i] - HALF_Y_SIZE * width[i];
i--;
}
else
break;
}
}
// double integration
std::vector<double> av(dimension, 0);
std::vector<double> diff_av(dimension, 0);
std::vector<double> loop_flag_x(dimension, 0);
std::vector<double> loop_flag_y(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag_x[i] = lowerboundary[i];
loop_flag_y[i] = loop_flag_x[i] - HALF_Y_SIZE * width[i];
}
i = 0;
while (i >= 0) {
norm = 0;
for (k = 0; k < dimension; k++) {
av[k] = 0;
diff_av[k] = 0;
loop_flag_y[k] = loop_flag_x[k] - HALF_Y_SIZE * width[k];
}
j = 0;
while (j >= 0) {
norm += distribution_x_y.get_value(loop_flag_x, loop_flag_y);
for (k = 0; k < dimension; k++) {
if (sigma_square[k].get_value(loop_flag_y) > EPSILON || sigma_square[k].get_value(loop_flag_y) < -EPSILON)
av[k] += distribution_x_y.get_value(loop_flag_x, loop_flag_y) * ( (loop_flag_x[k] + 0.5 * width[k]) - x_av[k].get_value(loop_flag_y)) / sigma_square[k].get_value(loop_flag_y);
diff_av[k] += distribution_x_y.get_value(loop_flag_x, loop_flag_y) * (loop_flag_x[k] - loop_flag_y[k]);
}
// iterate over any dimensions
j = dimension - 1;
while (j >= 0) {
loop_flag_y[j] += width[j];
if (loop_flag_y[j] > loop_flag_x[j] + HALF_Y_SIZE * width[j] - width[j] + EPSILON) {
loop_flag_y[j] = loop_flag_x[j] - HALF_Y_SIZE * width[j];
j--;
}
else
break;
}
}
std::vector<double> grad_temp(dimension, 0);
for (k = 0; k < dimension; k++) {
diff_av[k] /= (norm > 0 ? norm : 1);
av[k] = cvm::boltzmann() * temperature * av[k] / (norm > 0 ? norm : 1);
grad_temp[k] = av[k] - krestr[k] * diff_av[k];
}
grad.set_value(loop_flag_x, grad_temp);
count.set_value(loop_flag_x, norm);
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag_x[i] += width[i];
if (loop_flag_x[i] > upperboundary[i] - width[i] + EPSILON) {
loop_flag_x[i] = lowerboundary[i];
i--;
}
else
break;
}
}
}
// calculate 1D pmf
void calc_1D_pmf()
{
std::vector<double> last_position(1, 0);
std::vector<double> position(1, 0);
double min = 0;
double dG = 0;
double i;
oneD_pmf.set_value(lowerboundary, 0);
last_position = lowerboundary;
for (i = lowerboundary[0] + width[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
position[0] = i + EPSILON;
if (restart == false || input_count.get_value(last_position) == 0) {
dG = oneD_pmf.get_value(last_position) + grad.get_value(last_position)[0] * width[0];
}
else {
dG = oneD_pmf.get_value(last_position) + ((grad.get_value(last_position)[0] * count.get_value(last_position) + input_grad.get_value(last_position)[0] * input_count.get_value(last_position)) / (count.get_value(last_position) + input_count.get_value(last_position))) * width[0];
}
if (dG < min)
min = dG;
oneD_pmf.set_value(position, dG);
last_position[0] = i + EPSILON;
}
for (i = lowerboundary[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
position[0] = i + EPSILON;
oneD_pmf.set_value(position, oneD_pmf.get_value(position) - min);
}
}
// write 1D pmf
void write_1D_pmf() {
std::string pmf_filename = output_filename + ".UI.pmf";
// only for colvars module!
if (written_1D) cvm::backup_file(pmf_filename.c_str());
std::ostream* ofile_pmf = cvm::proxy->output_stream(pmf_filename.c_str());
std::vector<double> position(1, 0);
for (double i = lowerboundary[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
*ofile_pmf << i << " ";
position[0] = i + EPSILON;
*ofile_pmf << oneD_pmf.get_value(position) << std::endl;
}
cvm::proxy->close_output_stream(pmf_filename.c_str());
written_1D = true;
}
// write heads of the output files
void writehead(std::ostream& os) const {
os << "# " << dimension << std::endl;
for (int i = 0; i < dimension; i++) {
os << "# " << lowerboundary[i] << " " << width[i] << " " << int((upperboundary[i] - lowerboundary[i]) / width[i] + EPSILON) << " " << 0 << std::endl;
}
os << std::endl;
}
// write interal data, used for testing
void write_interal_data() {
std::string internal_filename = output_filename + ".UI.internal";
std::ostream* ofile_internal = cvm::proxy->output_stream(internal_filename.c_str());
std::vector<double> loop_flag(dimension, 0);
for (int i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i];
}
int n = 0;
while (n >= 0) {
for (int j = 0; j < dimension; j++) {
*ofile_internal << loop_flag[j] + 0.5 * width[j] << " ";
}
for (int k = 0; k < dimension; k++) {
*ofile_internal << grad.get_value(loop_flag)[k] << " ";
}
std::vector<double> ii(dimension,0);
for (double i = loop_flag[0] - 10; i < loop_flag[0] + 10 + EPSILON; i+= width[0]) {
for (double j = loop_flag[1] - 10; j< loop_flag[1] + 10 + EPSILON; j+=width[1]) {
ii[0] = i;
ii[1] = j;
*ofile_internal << i <<" "<<j<<" "<< distribution_x_y.get_value(loop_flag,ii)<< " ";
}
}
*ofile_internal << std::endl;
// iterate over any dimensions
n = dimension - 1;
while (n >= 0) {
loop_flag[n] += width[n];
if (loop_flag[n] > upperboundary[n] - width[n] + EPSILON) {
loop_flag[n] = lowerboundary[n];
n--;
}
else
break;
}
}
cvm::proxy->close_output_stream(internal_filename.c_str());
}
// write output files
void write_files() {
std::string grad_filename = output_filename + ".UI.grad";
std::string hist_filename = output_filename + ".UI.hist.grad";
std::string count_filename = output_filename + ".UI.count";
int i, j;
//
// only for colvars module!
if (written) cvm::backup_file(grad_filename.c_str());
//if (written) cvm::backup_file(hist_filename.c_str());
if (written) cvm::backup_file(count_filename.c_str());
std::ostream* ofile = cvm::proxy->output_stream(grad_filename.c_str());
std::ostream* ofile_hist = cvm::proxy->output_stream(hist_filename.c_str(), std::ios::app);
std::ostream* ofile_count = cvm::proxy->output_stream(count_filename.c_str());
writehead(*ofile);
writehead(*ofile_hist);
writehead(*ofile_count);
if (dimension == 1) {
calc_1D_pmf();
write_1D_pmf();
}
std::vector<double> loop_flag(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i];
}
i = 0;
while (i >= 0) {
for (j = 0; j < dimension; j++) {
*ofile << loop_flag[j] + 0.5 * width[j] << " ";
*ofile_hist << loop_flag[j] + 0.5 * width[j] << " ";
*ofile_count << loop_flag[j] + 0.5 * width[j] << " ";
}
if (restart == false) {
for (j = 0; j < dimension; j++) {
*ofile << grad.get_value(loop_flag)[j] << " ";
*ofile_hist << grad.get_value(loop_flag)[j] << " ";
}
*ofile << std::endl;
*ofile_hist << std::endl;
*ofile_count << count.get_value(loop_flag) << " " <<std::endl;
}
else {
double final_grad = 0;
for (j = 0; j < dimension; j++) {
int total_count_temp = (count.get_value(loop_flag) + input_count.get_value(loop_flag));
if (input_count.get_value(loop_flag) == 0)
final_grad = grad.get_value(loop_flag)[j];
else
final_grad = ((grad.get_value(loop_flag)[j] * count.get_value(loop_flag) + input_grad.get_value(loop_flag)[j] * input_count.get_value(loop_flag)) / total_count_temp);
*ofile << final_grad << " ";
*ofile_hist << final_grad << " ";
}
*ofile << std::endl;
*ofile_hist << std::endl;
*ofile_count << (count.get_value(loop_flag) + input_count.get_value(loop_flag)) << " " <<std::endl;
}
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag[i] += width[i];
if (loop_flag[i] > upperboundary[i] - width[i] + EPSILON) {
loop_flag[i] = lowerboundary[i];
i--;
*ofile << std::endl;
*ofile_hist << std::endl;
*ofile_count << std::endl;
}
else
break;
}
}
cvm::proxy->close_output_stream(grad_filename.c_str());
cvm::proxy->close_output_stream(hist_filename.c_str());
cvm::proxy->close_output_stream(count_filename.c_str());
written = true;
}
// read input files
void read_inputfiles(const std::vector<std::string> filename)
{
char sharp;
double nothing;
int dimension_temp;
int i, j, k, l, m;
std::vector<double> loop_bin_size(dimension, 0);
std::vector<double> position_temp(dimension, 0);
std::vector<double> grad_temp(dimension, 0);
int count_temp = 0;
for (i = 0; i < int(filename.size()); i++) {
int size = 1 , size_temp = 0;
std::string count_filename = filename[i] + ".UI.count";
std::string grad_filename = filename[i] + ".UI.grad";
std::ifstream count_file(count_filename.c_str(), std::ios::in);
std::ifstream grad_file(grad_filename.c_str(), std::ios::in);
count_file >> sharp >> dimension_temp;
grad_file >> sharp >> dimension_temp;
for (j = 0; j < dimension; j++) {
count_file >> sharp >> nothing >> nothing >> size_temp >> nothing;
grad_file >> sharp >> nothing >> nothing >> nothing >> nothing;
size *= size_temp;
}
for (j = 0; j < size; j++) {
do {
for (k = 0; k < dimension; k++) {
count_file >> position_temp[k];
grad_file >> nothing;
}
for (l = 0; l < dimension; l++) {
grad_file >> grad_temp[l];
}
count_file >> count_temp;
}
while (position_temp[i] < lowerboundary[i] - EPSILON || position_temp[i] > upperboundary[i] + EPSILON);
if (count_temp == 0) {
continue;
}
for (m = 0; m < dimension; m++) {
grad_temp[m] = (grad_temp[m] * count_temp + input_grad.get_value(position_temp)[m] * input_count.get_value(position_temp)) / (count_temp + input_count.get_value(position_temp));
}
input_grad.set_value(position_temp, grad_temp);
input_count.increase_value(position_temp, count_temp);
}
count_file.close();
grad_file.close();
}
}
};
}
#endif