This update includes one new feature (neural-network based collective variables), several small enhancements (including an automatic definition of grid boundaries for angle-based CVs, and a normalization option for eigenvector-based CVs), bugfixes and documentation improvements. Usage information for specific features included in the Colvars library (i.e. not just the library as a whole) is now also reported to the screen or LAMMPS logfile (as is done already in other LAMMPS classes). Notable to LAMMPS code development are the removals of duplicated code and of ambiguously-named preprocessor defines in the Colvars headers. Since the last PR, the existing regression tests have also been running automatically via GitHub Actions. The following pull requests in the Colvars repository are relevant to LAMMPS: - 475 Remove fatal error condition https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin) - 474 Allow normalizing eigenvector vector components to deal with unit change https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin) - 470 Better error handling in the initialization of NeuralNetwork CV https://github.com/Colvars/colvars/pull/470 (@HanatoK) - 468 Add examples of histogram configuration, with and without explicit grid parameters https://github.com/Colvars/colvars/pull/468 (@giacomofiorin) - 464 Fix #463 using more fine-grained features https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin) - 447 [RFC] New option "scaledBiasingForce" for colvarbias https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin) - 444 [RFC] Implementation of dense neural network as CV https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin) - 443 Fix explicit gradient dependency of sub-CVs https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin) - 442 Persistent bias count https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin) - 437 Return type of bias from scripting interface https://github.com/Colvars/colvars/pull/437 (@giacomofiorin) - 434 More flexible use of boundaries from colvars by grids https://github.com/Colvars/colvars/pull/434 (@jhenin) - 433 Prevent double-free in linearCombination https://github.com/Colvars/colvars/pull/433 (@HanatoK) - 428 More complete documentation for index file format (NDX) https://github.com/Colvars/colvars/pull/428 (@giacomofiorin) - 426 Integrate functional version of backup_file() into base proxy class https://github.com/Colvars/colvars/pull/426 (@giacomofiorin) - 424 Track CVC inheritance when documenting feature usage https://github.com/Colvars/colvars/pull/424 (@giacomofiorin) - 419 Generate citation report while running computations https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin) - 415 Rebin metadynamics bias from explicit hills when available https://github.com/Colvars/colvars/pull/415 (@giacomofiorin) - 312 Ignore a keyword if it has content to the left of it (regardless of braces) https://github.com/Colvars/colvars/pull/312 (@giacomofiorin) Authors: @giacomofiorin, @HanatoK, @jhenin
642 lines
17 KiB
C++
642 lines
17 KiB
C++
// -*- c++ -*-
|
|
|
|
// This file is part of the Collective Variables module (Colvars).
|
|
// The original version of Colvars and its updates are located at:
|
|
// https://github.com/Colvars/colvars
|
|
// Please update all Colvars source files before making any changes.
|
|
// If you wish to distribute your changes, please submit them to the
|
|
// Colvars repository at GitHub.
|
|
|
|
#include "colvarmodule.h"
|
|
#include "colvar.h"
|
|
#include "colvarcomp.h"
|
|
|
|
|
|
colvar::angle::angle(std::string const &conf)
|
|
: cvc(conf)
|
|
{
|
|
set_function_type("angle");
|
|
init_as_angle();
|
|
|
|
provide(f_cvc_inv_gradient);
|
|
provide(f_cvc_Jacobian);
|
|
enable(f_cvc_com_based);
|
|
|
|
group1 = parse_group(conf, "group1");
|
|
group2 = parse_group(conf, "group2");
|
|
group3 = parse_group(conf, "group3");
|
|
|
|
init_total_force_params(conf);
|
|
}
|
|
|
|
|
|
colvar::angle::angle(cvm::atom const &a1,
|
|
cvm::atom const &a2,
|
|
cvm::atom const &a3)
|
|
{
|
|
set_function_type("angle");
|
|
init_as_angle();
|
|
|
|
provide(f_cvc_inv_gradient);
|
|
provide(f_cvc_Jacobian);
|
|
enable(f_cvc_com_based);
|
|
|
|
group1 = new cvm::atom_group(std::vector<cvm::atom>(1, a1));
|
|
group2 = new cvm::atom_group(std::vector<cvm::atom>(1, a2));
|
|
group3 = new cvm::atom_group(std::vector<cvm::atom>(1, a3));
|
|
register_atom_group(group1);
|
|
register_atom_group(group2);
|
|
register_atom_group(group3);
|
|
}
|
|
|
|
|
|
void colvar::angle::calc_value()
|
|
{
|
|
cvm::atom_pos const g1_pos = group1->center_of_mass();
|
|
cvm::atom_pos const g2_pos = group2->center_of_mass();
|
|
cvm::atom_pos const g3_pos = group3->center_of_mass();
|
|
|
|
r21 = is_enabled(f_cvc_pbc_minimum_image) ?
|
|
cvm::position_distance(g2_pos, g1_pos) :
|
|
g1_pos - g2_pos;
|
|
r21l = r21.norm();
|
|
r23 = is_enabled(f_cvc_pbc_minimum_image) ?
|
|
cvm::position_distance(g2_pos, g3_pos) :
|
|
g3_pos - g2_pos;
|
|
r23l = r23.norm();
|
|
|
|
cvm::real const cos_theta = (r21*r23)/(r21l*r23l);
|
|
|
|
x.real_value = (180.0/PI) * cvm::acos(cos_theta);
|
|
}
|
|
|
|
|
|
void colvar::angle::calc_gradients()
|
|
{
|
|
cvm::real const cos_theta = (r21*r23)/(r21l*r23l);
|
|
cvm::real const dxdcos = -1.0 / cvm::sqrt(1.0 - cos_theta*cos_theta);
|
|
|
|
dxdr1 = (180.0/PI) * dxdcos *
|
|
(1.0/r21l) * ( r23/r23l + (-1.0) * cos_theta * r21/r21l );
|
|
|
|
dxdr3 = (180.0/PI) * dxdcos *
|
|
(1.0/r23l) * ( r21/r21l + (-1.0) * cos_theta * r23/r23l );
|
|
|
|
group1->set_weighted_gradient(dxdr1);
|
|
group2->set_weighted_gradient((dxdr1 + dxdr3) * (-1.0));
|
|
group3->set_weighted_gradient(dxdr3);
|
|
}
|
|
|
|
|
|
void colvar::angle::calc_force_invgrads()
|
|
{
|
|
// This uses a force measurement on groups 1 and 3 only
|
|
// to keep in line with the implicit variable change used to
|
|
// evaluate the Jacobian term (essentially polar coordinates
|
|
// centered on group2, which means group2 is kept fixed
|
|
// when propagating changes in the angle)
|
|
|
|
if (is_enabled(f_cvc_one_site_total_force)) {
|
|
group1->read_total_forces();
|
|
cvm::real norm_fact = 1.0 / dxdr1.norm2();
|
|
ft.real_value = norm_fact * dxdr1 * group1->total_force();
|
|
} else {
|
|
group1->read_total_forces();
|
|
group3->read_total_forces();
|
|
cvm::real norm_fact = 1.0 / (dxdr1.norm2() + dxdr3.norm2());
|
|
ft.real_value = norm_fact * ( dxdr1 * group1->total_force()
|
|
+ dxdr3 * group3->total_force());
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
void colvar::angle::calc_Jacobian_derivative()
|
|
{
|
|
// det(J) = (2 pi) r^2 * sin(theta)
|
|
// hence Jd = cot(theta)
|
|
const cvm::real theta = x.real_value * PI / 180.0;
|
|
jd = PI / 180.0 * (theta != 0.0 ? cvm::cos(theta) / cvm::sin(theta) : 0.0);
|
|
}
|
|
|
|
|
|
void colvar::angle::apply_force(colvarvalue const &force)
|
|
{
|
|
if (!group1->noforce)
|
|
group1->apply_colvar_force(force.real_value);
|
|
|
|
if (!group2->noforce)
|
|
group2->apply_colvar_force(force.real_value);
|
|
|
|
if (!group3->noforce)
|
|
group3->apply_colvar_force(force.real_value);
|
|
}
|
|
|
|
|
|
simple_scalar_dist_functions(angle)
|
|
|
|
|
|
|
|
colvar::dipole_angle::dipole_angle(std::string const &conf)
|
|
: cvc(conf)
|
|
{
|
|
set_function_type("dipoleAngle");
|
|
init_as_angle();
|
|
|
|
group1 = parse_group(conf, "group1");
|
|
group2 = parse_group(conf, "group2");
|
|
group3 = parse_group(conf, "group3");
|
|
|
|
init_total_force_params(conf);
|
|
}
|
|
|
|
|
|
colvar::dipole_angle::dipole_angle(cvm::atom const &a1,
|
|
cvm::atom const &a2,
|
|
cvm::atom const &a3)
|
|
{
|
|
set_function_type("dipoleAngle");
|
|
init_as_angle();
|
|
|
|
group1 = new cvm::atom_group(std::vector<cvm::atom>(1, a1));
|
|
group2 = new cvm::atom_group(std::vector<cvm::atom>(1, a2));
|
|
group3 = new cvm::atom_group(std::vector<cvm::atom>(1, a3));
|
|
register_atom_group(group1);
|
|
register_atom_group(group2);
|
|
register_atom_group(group3);
|
|
}
|
|
|
|
|
|
colvar::dipole_angle::dipole_angle()
|
|
{
|
|
set_function_type("dipoleAngle");
|
|
init_as_angle();
|
|
}
|
|
|
|
|
|
void colvar::dipole_angle::calc_value()
|
|
{
|
|
cvm::atom_pos const g1_pos = group1->center_of_mass();
|
|
cvm::atom_pos const g2_pos = group2->center_of_mass();
|
|
cvm::atom_pos const g3_pos = group3->center_of_mass();
|
|
|
|
group1->calc_dipole(g1_pos);
|
|
|
|
r21 = group1->dipole();
|
|
r21l = r21.norm();
|
|
r23 = is_enabled(f_cvc_pbc_minimum_image) ?
|
|
cvm::position_distance(g2_pos, g3_pos) :
|
|
g3_pos - g2_pos;
|
|
r23l = r23.norm();
|
|
|
|
cvm::real const cos_theta = (r21*r23)/(r21l*r23l);
|
|
|
|
x.real_value = (180.0/PI) * cvm::acos(cos_theta);
|
|
}
|
|
|
|
//to be implemented
|
|
//void colvar::dipole_angle::calc_force_invgrads(){}
|
|
//void colvar::dipole_angle::calc_Jacobian_derivative(){}
|
|
|
|
void colvar::dipole_angle::calc_gradients()
|
|
{
|
|
cvm::real const cos_theta = (r21*r23)/(r21l*r23l);
|
|
cvm::real const dxdcos = -1.0 / cvm::sqrt(1.0 - cos_theta*cos_theta);
|
|
|
|
dxdr1 = (180.0/PI) * dxdcos *
|
|
(1.0/r21l)* (r23/r23l + (-1.0) * cos_theta * r21/r21l );
|
|
|
|
dxdr3 = (180.0/PI) * dxdcos *
|
|
(1.0/r23l) * ( r21/r21l + (-1.0) * cos_theta * r23/r23l );
|
|
|
|
//this auxiliar variables are to avoid numerical errors inside "for"
|
|
double aux1 = group1->total_charge/group1->total_mass;
|
|
// double aux2 = group2->total_charge/group2->total_mass;
|
|
// double aux3 = group3->total_charge/group3->total_mass;
|
|
|
|
size_t i;
|
|
for (i = 0; i < group1->size(); i++) {
|
|
(*group1)[i].grad =((*group1)[i].charge + (-1)* (*group1)[i].mass * aux1) * (dxdr1);
|
|
}
|
|
|
|
for (i = 0; i < group2->size(); i++) {
|
|
(*group2)[i].grad = ((*group2)[i].mass/group2->total_mass)* dxdr3 * (-1.0);
|
|
}
|
|
|
|
for (i = 0; i < group3->size(); i++) {
|
|
(*group3)[i].grad =((*group3)[i].mass/group3->total_mass) * (dxdr3);
|
|
}
|
|
}
|
|
|
|
|
|
void colvar::dipole_angle::apply_force(colvarvalue const &force)
|
|
{
|
|
if (!group1->noforce)
|
|
group1->apply_colvar_force(force.real_value);
|
|
|
|
if (!group2->noforce)
|
|
group2->apply_colvar_force(force.real_value);
|
|
|
|
if (!group3->noforce)
|
|
group3->apply_colvar_force(force.real_value);
|
|
}
|
|
|
|
|
|
simple_scalar_dist_functions(dipole_angle)
|
|
|
|
|
|
|
|
colvar::dihedral::dihedral(std::string const &conf)
|
|
: cvc(conf)
|
|
{
|
|
set_function_type("dihedral");
|
|
init_as_periodic_angle();
|
|
provide(f_cvc_inv_gradient);
|
|
provide(f_cvc_Jacobian);
|
|
enable(f_cvc_com_based);
|
|
|
|
group1 = parse_group(conf, "group1");
|
|
group2 = parse_group(conf, "group2");
|
|
group3 = parse_group(conf, "group3");
|
|
group4 = parse_group(conf, "group4");
|
|
|
|
init_total_force_params(conf);
|
|
}
|
|
|
|
|
|
colvar::dihedral::dihedral(cvm::atom const &a1,
|
|
cvm::atom const &a2,
|
|
cvm::atom const &a3,
|
|
cvm::atom const &a4)
|
|
{
|
|
set_function_type("dihedral");
|
|
init_as_periodic_angle();
|
|
provide(f_cvc_inv_gradient);
|
|
provide(f_cvc_Jacobian);
|
|
enable(f_cvc_com_based);
|
|
|
|
b_1site_force = false;
|
|
|
|
group1 = new cvm::atom_group(std::vector<cvm::atom>(1, a1));
|
|
group2 = new cvm::atom_group(std::vector<cvm::atom>(1, a2));
|
|
group3 = new cvm::atom_group(std::vector<cvm::atom>(1, a3));
|
|
group4 = new cvm::atom_group(std::vector<cvm::atom>(1, a4));
|
|
register_atom_group(group1);
|
|
register_atom_group(group2);
|
|
register_atom_group(group3);
|
|
register_atom_group(group4);
|
|
}
|
|
|
|
|
|
colvar::dihedral::dihedral()
|
|
{
|
|
set_function_type("dihedral");
|
|
init_as_periodic_angle();
|
|
enable(f_cvc_periodic);
|
|
provide(f_cvc_inv_gradient);
|
|
provide(f_cvc_Jacobian);
|
|
}
|
|
|
|
|
|
void colvar::dihedral::calc_value()
|
|
{
|
|
cvm::atom_pos const g1_pos = group1->center_of_mass();
|
|
cvm::atom_pos const g2_pos = group2->center_of_mass();
|
|
cvm::atom_pos const g3_pos = group3->center_of_mass();
|
|
cvm::atom_pos const g4_pos = group4->center_of_mass();
|
|
|
|
// Usual sign convention: r12 = r2 - r1
|
|
r12 = is_enabled(f_cvc_pbc_minimum_image) ?
|
|
cvm::position_distance(g1_pos, g2_pos) :
|
|
g2_pos - g1_pos;
|
|
r23 = is_enabled(f_cvc_pbc_minimum_image) ?
|
|
cvm::position_distance(g2_pos, g3_pos) :
|
|
g3_pos - g2_pos;
|
|
r34 = is_enabled(f_cvc_pbc_minimum_image) ?
|
|
cvm::position_distance(g3_pos, g4_pos) :
|
|
g4_pos - g3_pos;
|
|
|
|
cvm::rvector const n1 = cvm::rvector::outer(r12, r23);
|
|
cvm::rvector const n2 = cvm::rvector::outer(r23, r34);
|
|
|
|
cvm::real const cos_phi = n1 * n2;
|
|
cvm::real const sin_phi = n1 * r34 * r23.norm();
|
|
|
|
x.real_value = (180.0/PI) * cvm::atan2(sin_phi, cos_phi);
|
|
this->wrap(x);
|
|
}
|
|
|
|
|
|
void colvar::dihedral::calc_gradients()
|
|
{
|
|
cvm::rvector A = cvm::rvector::outer(r12, r23);
|
|
cvm::real rA = A.norm();
|
|
cvm::rvector B = cvm::rvector::outer(r23, r34);
|
|
cvm::real rB = B.norm();
|
|
cvm::rvector C = cvm::rvector::outer(r23, A);
|
|
cvm::real rC = C.norm();
|
|
|
|
cvm::real const cos_phi = (A*B)/(rA*rB);
|
|
cvm::real const sin_phi = (C*B)/(rC*rB);
|
|
|
|
cvm::rvector f1, f2, f3;
|
|
|
|
rB = 1.0/rB;
|
|
B *= rB;
|
|
|
|
if (cvm::fabs(sin_phi) > 0.1) {
|
|
rA = 1.0/rA;
|
|
A *= rA;
|
|
cvm::rvector const dcosdA = rA*(cos_phi*A-B);
|
|
cvm::rvector const dcosdB = rB*(cos_phi*B-A);
|
|
rA = 1.0;
|
|
|
|
cvm::real const K = (1.0/sin_phi) * (180.0/PI);
|
|
|
|
f1 = K * cvm::rvector::outer(r23, dcosdA);
|
|
f3 = K * cvm::rvector::outer(dcosdB, r23);
|
|
f2 = K * (cvm::rvector::outer(dcosdA, r12)
|
|
+ cvm::rvector::outer(r34, dcosdB));
|
|
}
|
|
else {
|
|
rC = 1.0/rC;
|
|
C *= rC;
|
|
cvm::rvector const dsindC = rC*(sin_phi*C-B);
|
|
cvm::rvector const dsindB = rB*(sin_phi*B-C);
|
|
rC = 1.0;
|
|
|
|
cvm::real const K = (-1.0/cos_phi) * (180.0/PI);
|
|
|
|
f1.x = K*((r23.y*r23.y + r23.z*r23.z)*dsindC.x
|
|
- r23.x*r23.y*dsindC.y
|
|
- r23.x*r23.z*dsindC.z);
|
|
f1.y = K*((r23.z*r23.z + r23.x*r23.x)*dsindC.y
|
|
- r23.y*r23.z*dsindC.z
|
|
- r23.y*r23.x*dsindC.x);
|
|
f1.z = K*((r23.x*r23.x + r23.y*r23.y)*dsindC.z
|
|
- r23.z*r23.x*dsindC.x
|
|
- r23.z*r23.y*dsindC.y);
|
|
|
|
f3 = cvm::rvector::outer(dsindB, r23);
|
|
f3 *= K;
|
|
|
|
f2.x = K*(-(r23.y*r12.y + r23.z*r12.z)*dsindC.x
|
|
+(2.0*r23.x*r12.y - r12.x*r23.y)*dsindC.y
|
|
+(2.0*r23.x*r12.z - r12.x*r23.z)*dsindC.z
|
|
+dsindB.z*r34.y - dsindB.y*r34.z);
|
|
f2.y = K*(-(r23.z*r12.z + r23.x*r12.x)*dsindC.y
|
|
+(2.0*r23.y*r12.z - r12.y*r23.z)*dsindC.z
|
|
+(2.0*r23.y*r12.x - r12.y*r23.x)*dsindC.x
|
|
+dsindB.x*r34.z - dsindB.z*r34.x);
|
|
f2.z = K*(-(r23.x*r12.x + r23.y*r12.y)*dsindC.z
|
|
+(2.0*r23.z*r12.x - r12.z*r23.x)*dsindC.x
|
|
+(2.0*r23.z*r12.y - r12.z*r23.y)*dsindC.y
|
|
+dsindB.y*r34.x - dsindB.x*r34.y);
|
|
}
|
|
|
|
group1->set_weighted_gradient(-f1);
|
|
group2->set_weighted_gradient(-f2 + f1);
|
|
group3->set_weighted_gradient(-f3 + f2);
|
|
group4->set_weighted_gradient(f3);
|
|
}
|
|
|
|
|
|
void colvar::dihedral::calc_force_invgrads()
|
|
{
|
|
cvm::rvector const u12 = r12.unit();
|
|
cvm::rvector const u23 = r23.unit();
|
|
cvm::rvector const u34 = r34.unit();
|
|
|
|
cvm::real const d12 = r12.norm();
|
|
cvm::real const d34 = r34.norm();
|
|
|
|
cvm::rvector const cross1 = (cvm::rvector::outer(u23, u12)).unit();
|
|
cvm::rvector const cross4 = (cvm::rvector::outer(u23, u34)).unit();
|
|
|
|
cvm::real const dot1 = u23 * u12;
|
|
cvm::real const dot4 = u23 * u34;
|
|
|
|
cvm::real const fact1 = d12 * cvm::sqrt(1.0 - dot1 * dot1);
|
|
cvm::real const fact4 = d34 * cvm::sqrt(1.0 - dot4 * dot4);
|
|
|
|
group1->read_total_forces();
|
|
if (is_enabled(f_cvc_one_site_total_force)) {
|
|
// This is only measuring the force on group 1
|
|
ft.real_value = PI/180.0 * fact1 * (cross1 * group1->total_force());
|
|
} else {
|
|
// Default case: use groups 1 and 4
|
|
group4->read_total_forces();
|
|
ft.real_value = PI/180.0 * 0.5 * (fact1 * (cross1 * group1->total_force())
|
|
+ fact4 * (cross4 * group4->total_force()));
|
|
}
|
|
}
|
|
|
|
|
|
void colvar::dihedral::calc_Jacobian_derivative()
|
|
{
|
|
// With this choice of inverse gradient ("internal coordinates"), Jacobian correction is 0
|
|
jd = 0.0;
|
|
}
|
|
|
|
|
|
void colvar::dihedral::apply_force(colvarvalue const &force)
|
|
{
|
|
if (!group1->noforce)
|
|
group1->apply_colvar_force(force.real_value);
|
|
|
|
if (!group2->noforce)
|
|
group2->apply_colvar_force(force.real_value);
|
|
|
|
if (!group3->noforce)
|
|
group3->apply_colvar_force(force.real_value);
|
|
|
|
if (!group4->noforce)
|
|
group4->apply_colvar_force(force.real_value);
|
|
}
|
|
|
|
|
|
// metrics functions for cvc implementations with a periodicity
|
|
|
|
cvm::real colvar::dihedral::dist2(colvarvalue const &x1,
|
|
colvarvalue const &x2) const
|
|
{
|
|
cvm::real diff = x1.real_value - x2.real_value;
|
|
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
|
|
return diff * diff;
|
|
}
|
|
|
|
|
|
colvarvalue colvar::dihedral::dist2_lgrad(colvarvalue const &x1,
|
|
colvarvalue const &x2) const
|
|
{
|
|
cvm::real diff = x1.real_value - x2.real_value;
|
|
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
|
|
return 2.0 * diff;
|
|
}
|
|
|
|
|
|
colvarvalue colvar::dihedral::dist2_rgrad(colvarvalue const &x1,
|
|
colvarvalue const &x2) const
|
|
{
|
|
cvm::real diff = x1.real_value - x2.real_value;
|
|
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
|
|
return (-2.0) * diff;
|
|
}
|
|
|
|
|
|
void colvar::dihedral::wrap(colvarvalue &x_unwrapped) const
|
|
{
|
|
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
|
|
x_unwrapped.real_value -= 360.0;
|
|
return;
|
|
}
|
|
|
|
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
|
|
x_unwrapped.real_value += 360.0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
colvar::polar_theta::polar_theta(std::string const &conf)
|
|
: cvc(conf)
|
|
{
|
|
set_function_type("polarTheta");
|
|
enable(f_cvc_com_based);
|
|
|
|
atoms = parse_group(conf, "atoms");
|
|
init_total_force_params(conf);
|
|
x.type(colvarvalue::type_scalar);
|
|
}
|
|
|
|
|
|
colvar::polar_theta::polar_theta()
|
|
{
|
|
set_function_type("polarTheta");
|
|
x.type(colvarvalue::type_scalar);
|
|
}
|
|
|
|
|
|
void colvar::polar_theta::calc_value()
|
|
{
|
|
cvm::rvector pos = atoms->center_of_mass();
|
|
r = atoms->center_of_mass().norm();
|
|
// Internal values of theta and phi are radians
|
|
theta = (r > 0.) ? cvm::acos(pos.z / r) : 0.;
|
|
phi = cvm::atan2(pos.y, pos.x);
|
|
x.real_value = (180.0/PI) * theta;
|
|
}
|
|
|
|
|
|
void colvar::polar_theta::calc_gradients()
|
|
{
|
|
if (r == 0.)
|
|
atoms->set_weighted_gradient(cvm::rvector(0., 0., 0.));
|
|
else
|
|
atoms->set_weighted_gradient(cvm::rvector(
|
|
(180.0/PI) * cvm::cos(theta) * cvm::cos(phi) / r,
|
|
(180.0/PI) * cvm::cos(theta) * cvm::sin(phi) / r,
|
|
(180.0/PI) * -cvm::sin(theta) / r));
|
|
}
|
|
|
|
|
|
void colvar::polar_theta::apply_force(colvarvalue const &force)
|
|
{
|
|
if (!atoms->noforce)
|
|
atoms->apply_colvar_force(force.real_value);
|
|
}
|
|
|
|
|
|
simple_scalar_dist_functions(polar_theta)
|
|
|
|
|
|
colvar::polar_phi::polar_phi(std::string const &conf)
|
|
: cvc(conf)
|
|
{
|
|
set_function_type("polarPhi");
|
|
init_as_periodic_angle();
|
|
enable(f_cvc_com_based);
|
|
|
|
atoms = parse_group(conf, "atoms");
|
|
init_total_force_params(conf);
|
|
}
|
|
|
|
|
|
colvar::polar_phi::polar_phi()
|
|
{
|
|
set_function_type("polarPhi");
|
|
init_as_periodic_angle();
|
|
}
|
|
|
|
|
|
void colvar::polar_phi::calc_value()
|
|
{
|
|
cvm::rvector pos = atoms->center_of_mass();
|
|
r = atoms->center_of_mass().norm();
|
|
// Internal values of theta and phi are radians
|
|
theta = (r > 0.) ? cvm::acos(pos.z / r) : 0.;
|
|
phi = cvm::atan2(pos.y, pos.x);
|
|
x.real_value = (180.0/PI) * phi;
|
|
}
|
|
|
|
|
|
void colvar::polar_phi::calc_gradients()
|
|
{
|
|
atoms->set_weighted_gradient(cvm::rvector(
|
|
(180.0/PI) * -cvm::sin(phi) / (r*cvm::sin(theta)),
|
|
(180.0/PI) * cvm::cos(phi) / (r*cvm::sin(theta)),
|
|
0.));
|
|
}
|
|
|
|
|
|
void colvar::polar_phi::apply_force(colvarvalue const &force)
|
|
{
|
|
if (!atoms->noforce)
|
|
atoms->apply_colvar_force(force.real_value);
|
|
}
|
|
|
|
|
|
// Same as dihedral, for polar_phi
|
|
|
|
cvm::real colvar::polar_phi::dist2(colvarvalue const &x1,
|
|
colvarvalue const &x2) const
|
|
{
|
|
cvm::real diff = x1.real_value - x2.real_value;
|
|
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
|
|
return diff * diff;
|
|
}
|
|
|
|
|
|
colvarvalue colvar::polar_phi::dist2_lgrad(colvarvalue const &x1,
|
|
colvarvalue const &x2) const
|
|
{
|
|
cvm::real diff = x1.real_value - x2.real_value;
|
|
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
|
|
return 2.0 * diff;
|
|
}
|
|
|
|
|
|
colvarvalue colvar::polar_phi::dist2_rgrad(colvarvalue const &x1,
|
|
colvarvalue const &x2) const
|
|
{
|
|
cvm::real diff = x1.real_value - x2.real_value;
|
|
diff = (diff < -180.0 ? diff + 360.0 : (diff > 180.0 ? diff - 360.0 : diff));
|
|
return (-2.0) * diff;
|
|
}
|
|
|
|
|
|
void colvar::polar_phi::wrap(colvarvalue &x_unwrapped) const
|
|
{
|
|
if ((x_unwrapped.real_value - wrap_center) >= 180.0) {
|
|
x_unwrapped.real_value -= 360.0;
|
|
return;
|
|
}
|
|
|
|
if ((x_unwrapped.real_value - wrap_center) < -180.0) {
|
|
x_unwrapped.real_value += 360.0;
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|