This update includes one new feature (neural-network based collective variables), several small enhancements (including an automatic definition of grid boundaries for angle-based CVs, and a normalization option for eigenvector-based CVs), bugfixes and documentation improvements. Usage information for specific features included in the Colvars library (i.e. not just the library as a whole) is now also reported to the screen or LAMMPS logfile (as is done already in other LAMMPS classes). Notable to LAMMPS code development are the removals of duplicated code and of ambiguously-named preprocessor defines in the Colvars headers. Since the last PR, the existing regression tests have also been running automatically via GitHub Actions. The following pull requests in the Colvars repository are relevant to LAMMPS: - 475 Remove fatal error condition https://github.com/Colvars/colvars/pull/475 (@jhenin, @giacomofiorin) - 474 Allow normalizing eigenvector vector components to deal with unit change https://github.com/Colvars/colvars/pull/474 (@giacomofiorin, @jhenin) - 470 Better error handling in the initialization of NeuralNetwork CV https://github.com/Colvars/colvars/pull/470 (@HanatoK) - 468 Add examples of histogram configuration, with and without explicit grid parameters https://github.com/Colvars/colvars/pull/468 (@giacomofiorin) - 464 Fix #463 using more fine-grained features https://github.com/Colvars/colvars/pull/464 (@jhenin, @giacomofiorin) - 447 [RFC] New option "scaledBiasingForce" for colvarbias https://github.com/Colvars/colvars/pull/447 (@HanatoK, @jhenin) - 444 [RFC] Implementation of dense neural network as CV https://github.com/Colvars/colvars/pull/444 (@HanatoK, @giacomofiorin, @jhenin) - 443 Fix explicit gradient dependency of sub-CVs https://github.com/Colvars/colvars/pull/443 (@HanatoK, @jhenin) - 442 Persistent bias count https://github.com/Colvars/colvars/pull/442 (@jhenin, @giacomofiorin) - 437 Return type of bias from scripting interface https://github.com/Colvars/colvars/pull/437 (@giacomofiorin) - 434 More flexible use of boundaries from colvars by grids https://github.com/Colvars/colvars/pull/434 (@jhenin) - 433 Prevent double-free in linearCombination https://github.com/Colvars/colvars/pull/433 (@HanatoK) - 428 More complete documentation for index file format (NDX) https://github.com/Colvars/colvars/pull/428 (@giacomofiorin) - 426 Integrate functional version of backup_file() into base proxy class https://github.com/Colvars/colvars/pull/426 (@giacomofiorin) - 424 Track CVC inheritance when documenting feature usage https://github.com/Colvars/colvars/pull/424 (@giacomofiorin) - 419 Generate citation report while running computations https://github.com/Colvars/colvars/pull/419 (@giacomofiorin, @jhenin) - 415 Rebin metadynamics bias from explicit hills when available https://github.com/Colvars/colvars/pull/415 (@giacomofiorin) - 312 Ignore a keyword if it has content to the left of it (regardless of braces) https://github.com/Colvars/colvars/pull/312 (@giacomofiorin) Authors: @giacomofiorin, @HanatoK, @jhenin
189 lines
8.9 KiB
C++
189 lines
8.9 KiB
C++
#if (__cplusplus >= 201103L)
|
|
|
|
#include "colvarmodule.h"
|
|
#include "colvarvalue.h"
|
|
#include "colvarparse.h"
|
|
#include "colvar.h"
|
|
#include "colvarcomp.h"
|
|
#include "colvar_neuralnetworkcompute.h"
|
|
|
|
using namespace neuralnetworkCV;
|
|
|
|
colvar::neuralNetwork::neuralNetwork(std::string const &conf): linearCombination(conf) {
|
|
set_function_type("neuralNetwork");
|
|
// the output of neural network consists of multiple values
|
|
// read "output_component" key to determine it
|
|
get_keyval(conf, "output_component", m_output_index);
|
|
// read weight files
|
|
bool has_weight_files = true;
|
|
size_t num_layers_weight = 0;
|
|
std::vector<std::string> weight_files;
|
|
while (has_weight_files) {
|
|
std::string lookup_key = std::string{"layer"} + cvm::to_str(num_layers_weight + 1) + std::string{"_WeightsFile"};
|
|
if (key_lookup(conf, lookup_key.c_str())) {
|
|
std::string weight_filename;
|
|
get_keyval(conf, lookup_key.c_str(), weight_filename, std::string(""));
|
|
weight_files.push_back(weight_filename);
|
|
cvm::log(std::string{"Will read layer["} + cvm::to_str(num_layers_weight + 1) + std::string{"] weights from "} + weight_filename + '\n');
|
|
++num_layers_weight;
|
|
} else {
|
|
has_weight_files = false;
|
|
}
|
|
}
|
|
// read bias files
|
|
bool has_bias_files = true;
|
|
size_t num_layers_bias = 0;
|
|
std::vector<std::string> bias_files;
|
|
while (has_bias_files) {
|
|
std::string lookup_key = std::string{"layer"} + cvm::to_str(num_layers_bias + 1) + std::string{"_BiasesFile"};
|
|
if (key_lookup(conf, lookup_key.c_str())) {
|
|
std::string bias_filename;
|
|
get_keyval(conf, lookup_key.c_str(), bias_filename, std::string(""));
|
|
bias_files.push_back(bias_filename);
|
|
cvm::log(std::string{"Will read layer["} + cvm::to_str(num_layers_bias + 1) + std::string{"] biases from "} + bias_filename + '\n');
|
|
++num_layers_bias;
|
|
} else {
|
|
has_bias_files = false;
|
|
}
|
|
}
|
|
// read activation function strings
|
|
bool has_activation_functions = true;
|
|
size_t num_activation_functions = 0;
|
|
// pair(is_custom_function, function_string)
|
|
std::vector<std::pair<bool, std::string>> activation_functions;
|
|
while (has_activation_functions) {
|
|
std::string lookup_key = std::string{"layer"} + cvm::to_str(num_activation_functions + 1) + std::string{"_activation"};
|
|
std::string lookup_key_custom = std::string{"layer"} + cvm::to_str(num_activation_functions + 1) + std::string{"_custom_activation"};
|
|
if (key_lookup(conf, lookup_key.c_str())) {
|
|
// Ok, this is not a custom function
|
|
std::string function_name;
|
|
get_keyval(conf, lookup_key.c_str(), function_name, std::string(""));
|
|
if (activation_function_map.find(function_name) == activation_function_map.end()) {
|
|
cvm::error("Unknown activation function name: \"" + function_name + "\".\n");
|
|
return;
|
|
}
|
|
activation_functions.push_back(std::make_pair(false, function_name));
|
|
cvm::log(std::string{"The activation function for layer["} + cvm::to_str(num_activation_functions + 1) + std::string{"] is "} + function_name + '\n');
|
|
++num_activation_functions;
|
|
#ifdef LEPTON
|
|
} else if (key_lookup(conf, lookup_key_custom.c_str())) {
|
|
std::string function_expression;
|
|
get_keyval(conf, lookup_key_custom.c_str(), function_expression, std::string(""));
|
|
activation_functions.push_back(std::make_pair(true, function_expression));
|
|
cvm::log(std::string{"The custom activation function for layer["} + cvm::to_str(num_activation_functions + 1) + std::string{"] is "} + function_expression + '\n');
|
|
++num_activation_functions;
|
|
#endif
|
|
} else {
|
|
has_activation_functions = false;
|
|
}
|
|
}
|
|
// expect the three numbers are equal
|
|
if ((num_layers_weight != num_layers_bias) || (num_layers_bias != num_activation_functions)) {
|
|
cvm::error("Error: the numbers of weights, biases and activation functions do not match.\n");
|
|
return;
|
|
}
|
|
// nn = std::make_unique<neuralnetworkCV::neuralNetworkCompute>();
|
|
// std::make_unique is only available in C++14
|
|
nn = std::unique_ptr<neuralnetworkCV::neuralNetworkCompute>(new neuralnetworkCV::neuralNetworkCompute());
|
|
for (size_t i_layer = 0; i_layer < num_layers_weight; ++i_layer) {
|
|
denseLayer d;
|
|
#ifdef LEPTON
|
|
if (activation_functions[i_layer].first) {
|
|
// use custom function as activation function
|
|
try {
|
|
d = denseLayer(weight_files[i_layer], bias_files[i_layer], activation_functions[i_layer].second);
|
|
} catch (std::exception &ex) {
|
|
cvm::error("Error on initializing layer " + cvm::to_str(i_layer) + " (" + ex.what() + ")\n", COLVARS_INPUT_ERROR);
|
|
return;
|
|
}
|
|
} else {
|
|
#endif
|
|
// query the map of supported activation functions
|
|
const auto& f = activation_function_map[activation_functions[i_layer].second].first;
|
|
const auto& df = activation_function_map[activation_functions[i_layer].second].second;
|
|
try {
|
|
d = denseLayer(weight_files[i_layer], bias_files[i_layer], f, df);
|
|
} catch (std::exception &ex) {
|
|
cvm::error("Error on initializing layer " + cvm::to_str(i_layer) + " (" + ex.what() + ")\n", COLVARS_INPUT_ERROR);
|
|
return;
|
|
}
|
|
#ifdef LEPTON
|
|
}
|
|
#endif
|
|
// add a new dense layer to network
|
|
if (nn->addDenseLayer(d)) {
|
|
if (cvm::debug()) {
|
|
// show information about the neural network
|
|
cvm::log("Layer " + cvm::to_str(i_layer) + " : has " + cvm::to_str(d.getInputSize()) + " input nodes and " + cvm::to_str(d.getOutputSize()) + " output nodes.\n");
|
|
for (size_t i_output = 0; i_output < d.getOutputSize(); ++i_output) {
|
|
for (size_t j_input = 0; j_input < d.getInputSize(); ++j_input) {
|
|
cvm::log(" weights[" + cvm::to_str(i_output) + "][" + cvm::to_str(j_input) + "] = " + cvm::to_str(d.getWeight(i_output, j_input)));
|
|
}
|
|
cvm::log(" biases[" + cvm::to_str(i_output) + "] = " + cvm::to_str(d.getBias(i_output)) + "\n");
|
|
}
|
|
}
|
|
} else {
|
|
cvm::error("Error: error on adding a new dense layer.\n");
|
|
return;
|
|
}
|
|
}
|
|
nn->input().resize(cv.size());
|
|
}
|
|
|
|
colvar::neuralNetwork::~neuralNetwork() {
|
|
}
|
|
|
|
void colvar::neuralNetwork::calc_value() {
|
|
x.reset();
|
|
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
|
cv[i_cv]->calc_value();
|
|
const colvarvalue& current_cv_value = cv[i_cv]->value();
|
|
// for current nn implementation we have to assume taht types are always scaler
|
|
if (current_cv_value.type() == colvarvalue::type_scalar) {
|
|
nn->input()[i_cv] = cv[i_cv]->sup_coeff * (cvm::pow(current_cv_value.real_value, cv[i_cv]->sup_np));
|
|
} else {
|
|
cvm::error("Error: using of non-scaler component.\n");
|
|
return;
|
|
}
|
|
}
|
|
nn->compute();
|
|
x = nn->getOutput(m_output_index);
|
|
}
|
|
|
|
void colvar::neuralNetwork::calc_gradients() {
|
|
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
|
cv[i_cv]->calc_gradients();
|
|
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
|
const cvm::real factor = nn->getGradient(m_output_index, i_cv);
|
|
const cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
|
|
for (size_t j_elem = 0; j_elem < cv[i_cv]->value().size(); ++j_elem) {
|
|
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
|
|
for (size_t l_atom = 0; l_atom < (cv[i_cv]->atom_groups)[k_ag]->size(); ++l_atom) {
|
|
(*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad = factor_polynomial * factor * (*(cv[i_cv]->atom_groups)[k_ag])[l_atom].grad;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void colvar::neuralNetwork::apply_force(colvarvalue const &force) {
|
|
for (size_t i_cv = 0; i_cv < cv.size(); ++i_cv) {
|
|
// If this CV us explicit gradients, then atomic gradients is already calculated
|
|
// We can apply the force to atom groups directly
|
|
if (cv[i_cv]->is_enabled(f_cvc_explicit_gradient)) {
|
|
for (size_t k_ag = 0 ; k_ag < cv[i_cv]->atom_groups.size(); ++k_ag) {
|
|
(cv[i_cv]->atom_groups)[k_ag]->apply_colvar_force(force.real_value);
|
|
}
|
|
} else {
|
|
// Compute factors for polynomial combinations
|
|
const cvm::real factor_polynomial = getPolynomialFactorOfCVGradient(i_cv);
|
|
const cvm::real factor = nn->getGradient(m_output_index, i_cv);;
|
|
colvarvalue cv_force = force.real_value * factor * factor_polynomial;
|
|
cv[i_cv]->apply_force(cv_force);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|