Files
lammps/src/compute_omega_chunk.cpp

300 lines
9.7 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_omega_chunk.h"
#include "atom.h"
#include "compute_chunk_atom.h"
#include "domain.h"
#include "error.h"
#include "math_eigen.h"
#include "math_extra.h"
#include "memory.h"
using namespace LAMMPS_NS;
#define EPSILON 1.0e-6
/* ---------------------------------------------------------------------- */
ComputeOmegaChunk::ComputeOmegaChunk(LAMMPS *lmp, int narg, char **arg) :
ComputeChunk(lmp, narg, arg), massproc(nullptr), masstotal(nullptr), com(nullptr),
comall(nullptr), inertia(nullptr), inertiaall(nullptr), angmom(nullptr), angmomall(nullptr),
omega(nullptr)
{
if (narg != 4) error->all(FLERR, "Illegal compute omega/chunk command");
array_flag = 1;
size_array_cols = 3;
size_array_rows = 0;
size_array_rows_variable = 1;
extarray = 0;
ComputeOmegaChunk::init();
ComputeOmegaChunk::allocate();
}
/* ---------------------------------------------------------------------- */
ComputeOmegaChunk::~ComputeOmegaChunk()
{
memory->destroy(massproc);
memory->destroy(masstotal);
memory->destroy(com);
memory->destroy(comall);
memory->destroy(angmom);
memory->destroy(angmomall);
memory->destroy(inertia);
memory->destroy(inertiaall);
memory->destroy(omega);
}
/* ---------------------------------------------------------------------- */
void ComputeOmegaChunk::compute_array()
{
int i, j, m, index;
double dx, dy, dz, massone;
double unwrap[3];
ComputeChunk::compute_array();
int *ichunk = cchunk->ichunk;
if (nchunk > maxchunk) allocate();
size_array_rows = nchunk;
// zero local per-chunk values
for (i = 0; i < nchunk; i++) {
massproc[i] = 0.0;
com[i][0] = com[i][1] = com[i][2] = 0.0;
for (j = 0; j < 6; j++) inertia[i][j] = 0.0;
angmom[i][0] = angmom[i][1] = angmom[i][2] = 0.0;
omega[i][0] = omega[i][1] = omega[i][2] = 0.0;
}
// compute COM for each chunk
double **x = atom->x;
int *mask = atom->mask;
int *type = atom->type;
imageint *image = atom->image;
double *mass = atom->mass;
double *rmass = atom->rmass;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
domain->unmap(x[i], image[i], unwrap);
massproc[index] += massone;
com[index][0] += unwrap[0] * massone;
com[index][1] += unwrap[1] * massone;
com[index][2] += unwrap[2] * massone;
}
MPI_Allreduce(massproc, masstotal, nchunk, MPI_DOUBLE, MPI_SUM, world);
MPI_Allreduce(&com[0][0], &comall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world);
for (i = 0; i < nchunk; i++) {
if (masstotal[i] > 0.0) {
comall[i][0] /= masstotal[i];
comall[i][1] /= masstotal[i];
comall[i][2] /= masstotal[i];
}
}
// compute inertia tensor for each chunk
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
domain->unmap(x[i], image[i], unwrap);
dx = unwrap[0] - comall[index][0];
dy = unwrap[1] - comall[index][1];
dz = unwrap[2] - comall[index][2];
inertia[index][0] += massone * (dy * dy + dz * dz);
inertia[index][1] += massone * (dx * dx + dz * dz);
inertia[index][2] += massone * (dx * dx + dy * dy);
inertia[index][3] -= massone * dx * dy;
inertia[index][4] -= massone * dy * dz;
inertia[index][5] -= massone * dx * dz;
}
MPI_Allreduce(&inertia[0][0], &inertiaall[0][0], 6 * nchunk, MPI_DOUBLE, MPI_SUM, world);
// compute angmom for each chunk
double **v = atom->v;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
domain->unmap(x[i], image[i], unwrap);
dx = unwrap[0] - comall[index][0];
dy = unwrap[1] - comall[index][1];
dz = unwrap[2] - comall[index][2];
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
angmom[index][0] += massone * (dy * v[i][2] - dz * v[i][1]);
angmom[index][1] += massone * (dz * v[i][0] - dx * v[i][2]);
angmom[index][2] += massone * (dx * v[i][1] - dy * v[i][0]);
}
MPI_Allreduce(&angmom[0][0], &angmomall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world);
// compute omega for each chunk
double determinant, invdeterminant;
double idiag[3], ex[3], ey[3], ez[3], cross[3];
double ione[3][3], inverse[3][3], evectors[3][3];
double *iall, *mall;
for (m = 0; m < nchunk; m++) {
// determinant = triple product of rows of inertia matrix
iall = &inertiaall[m][0];
determinant = iall[0] * (iall[1] * iall[2] - iall[4] * iall[4]) +
iall[3] * (iall[4] * iall[5] - iall[3] * iall[2]) +
iall[5] * (iall[3] * iall[4] - iall[1] * iall[5]);
ione[0][0] = iall[0];
ione[1][1] = iall[1];
ione[2][2] = iall[2];
ione[0][1] = ione[1][0] = iall[3];
ione[1][2] = ione[2][1] = iall[4];
ione[0][2] = ione[2][0] = iall[5];
// non-singular I matrix
// use L = Iw, inverting I to solve for w
if (determinant > EPSILON) {
inverse[0][0] = ione[1][1] * ione[2][2] - ione[1][2] * ione[2][1];
inverse[0][1] = -(ione[0][1] * ione[2][2] - ione[0][2] * ione[2][1]);
inverse[0][2] = ione[0][1] * ione[1][2] - ione[0][2] * ione[1][1];
inverse[1][0] = -(ione[1][0] * ione[2][2] - ione[1][2] * ione[2][0]);
inverse[1][1] = ione[0][0] * ione[2][2] - ione[0][2] * ione[2][0];
inverse[1][2] = -(ione[0][0] * ione[1][2] - ione[0][2] * ione[1][0]);
inverse[2][0] = ione[1][0] * ione[2][1] - ione[1][1] * ione[2][0];
inverse[2][1] = -(ione[0][0] * ione[2][1] - ione[0][1] * ione[2][0]);
inverse[2][2] = ione[0][0] * ione[1][1] - ione[0][1] * ione[1][0];
invdeterminant = 1.0 / determinant;
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++) inverse[i][j] *= invdeterminant;
mall = &angmomall[m][0];
omega[m][0] = inverse[0][0] * mall[0] + inverse[0][1] * mall[1] + inverse[0][2] * mall[2];
omega[m][1] = inverse[1][0] * mall[0] + inverse[1][1] * mall[1] + inverse[1][2] * mall[2];
omega[m][2] = inverse[2][0] * mall[0] + inverse[2][1] * mall[1] + inverse[2][2] * mall[2];
// handle each (nearly) singular I matrix
// due to 2-atom chunk or linear molecule
// use jacobi3() and angmom_to_omega() to calculate valid omega
} else {
int ierror = MathEigen::jacobi3(ione, idiag, evectors);
if (ierror) error->all(FLERR, "Insufficient Jacobi rotations for omega/chunk");
ex[0] = evectors[0][0];
ex[1] = evectors[1][0];
ex[2] = evectors[2][0];
ey[0] = evectors[0][1];
ey[1] = evectors[1][1];
ey[2] = evectors[2][1];
ez[0] = evectors[0][2];
ez[1] = evectors[1][2];
ez[2] = evectors[2][2];
// enforce 3 evectors as a right-handed coordinate system
// flip 3rd vector if needed
MathExtra::cross3(ex, ey, cross);
if (MathExtra::dot3(cross, ez) < 0.0) MathExtra::negate3(ez);
// if any principal moment < scaled EPSILON, set to 0.0
double max;
max = MAX(idiag[0], idiag[1]);
max = MAX(max, idiag[2]);
if (idiag[0] < EPSILON * max) idiag[0] = 0.0;
if (idiag[1] < EPSILON * max) idiag[1] = 0.0;
if (idiag[2] < EPSILON * max) idiag[2] = 0.0;
// calculate omega using diagonalized inertia matrix
MathExtra::angmom_to_omega(&angmomall[m][0], ex, ey, ez, idiag, &omega[m][0]);
}
}
}
/* ----------------------------------------------------------------------
free and reallocate per-chunk arrays
------------------------------------------------------------------------- */
void ComputeOmegaChunk::allocate()
{
ComputeChunk::allocate();
memory->destroy(massproc);
memory->destroy(masstotal);
memory->destroy(com);
memory->destroy(comall);
memory->destroy(inertia);
memory->destroy(inertiaall);
memory->destroy(angmom);
memory->destroy(angmomall);
memory->destroy(omega);
maxchunk = nchunk;
memory->create(massproc, maxchunk, "omega/chunk:massproc");
memory->create(masstotal, maxchunk, "omega/chunk:masstotal");
memory->create(com, maxchunk, 3, "omega/chunk:com");
memory->create(comall, maxchunk, 3, "omega/chunk:comall");
memory->create(inertia, maxchunk, 6, "omega/chunk:inertia");
memory->create(inertiaall, maxchunk, 6, "omega/chunk:inertiaall");
memory->create(angmom, maxchunk, 3, "omega/chunk:angmom");
memory->create(angmomall, maxchunk, 3, "omega/chunk:angmomall");
memory->create(omega, maxchunk, 3, "omega/chunk:omega");
array = omega;
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeOmegaChunk::memory_usage()
{
double bytes = ComputeChunk::memory_usage();
bytes += (bigint) maxchunk * 2 * sizeof(double);
bytes += (double) maxchunk * 2 * 3 * sizeof(double);
bytes += (double) maxchunk * 2 * 6 * sizeof(double);
bytes += (double) maxchunk * 2 * 3 * sizeof(double);
bytes += (double) maxchunk * 3 * sizeof(double);
return bytes;
}