Files
lammps/src/KOKKOS/atom_vec_dipole_kokkos.cpp
2024-03-01 03:03:47 -05:00

674 lines
25 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "atom_vec_dipole_kokkos.h"
#include "atom_kokkos.h"
#include "atom_masks.h"
#include "domain.h"
#include "error.h"
#include "fix.h"
#include "memory_kokkos.h"
#include "modify.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
AtomVecDipoleKokkos::AtomVecDipoleKokkos(LAMMPS *lmp) : AtomVec(lmp),
AtomVecKokkos(lmp), AtomVecDipole(lmp), q(nullptr) {}
/* ----------------------------------------------------------------------
grow atom arrays
n = 0 grows arrays by DELTA
n > 0 allocates arrays to size n
------------------------------------------------------------------------- */
void AtomVecDipoleKokkos::grow(int n)
{
auto DELTA = LMP_KOKKOS_AV_DELTA;
int step = MAX(DELTA,nmax*0.01);
if (n == 0) nmax += step;
else nmax = n;
atomKK->nmax = nmax;
if (nmax < 0 || nmax > MAXSMALLINT)
error->one(FLERR,"Per-processor system is too big");
atomKK->sync(Device,ALL_MASK);
atomKK->modified(Device,ALL_MASK);
memoryKK->grow_kokkos(atomKK->k_tag,atomKK->tag,nmax,"atom:tag");
memoryKK->grow_kokkos(atomKK->k_type,atomKK->type,nmax,"atom:type");
memoryKK->grow_kokkos(atomKK->k_mask,atomKK->mask,nmax,"atom:mask");
memoryKK->grow_kokkos(atomKK->k_image,atomKK->image,nmax,"atom:image");
memoryKK->grow_kokkos(atomKK->k_x,atomKK->x,nmax,"atom:x");
memoryKK->grow_kokkos(atomKK->k_v,atomKK->v,nmax,"atom:v");
memoryKK->grow_kokkos(atomKK->k_f,atomKK->f,nmax,"atom:f");
memoryKK->grow_kokkos(atomKK->k_q,atomKK->q,nmax,"atom:q");
memoryKK->grow_kokkos(atomKK->k_mu,atomKK->mu,nmax,"atom:mu");
grow_pointers();
atomKK->sync(Host,ALL_MASK);
if (atom->nextra_grow)
for (int iextra = 0; iextra < atom->nextra_grow; iextra++)
modify->fix[atom->extra_grow[iextra]]->grow_arrays(nmax);
}
/* ----------------------------------------------------------------------
reset local array ptrs
------------------------------------------------------------------------- */
void AtomVecDipoleKokkos::grow_pointers()
{
tag = atomKK->tag;
d_tag = atomKK->k_tag.d_view;
h_tag = atomKK->k_tag.h_view;
type = atomKK->type;
d_type = atomKK->k_type.d_view;
h_type = atomKK->k_type.h_view;
mask = atomKK->mask;
d_mask = atomKK->k_mask.d_view;
h_mask = atomKK->k_mask.h_view;
image = atomKK->image;
d_image = atomKK->k_image.d_view;
h_image = atomKK->k_image.h_view;
x = atomKK->x;
d_x = atomKK->k_x.d_view;
h_x = atomKK->k_x.h_view;
v = atomKK->v;
d_v = atomKK->k_v.d_view;
h_v = atomKK->k_v.h_view;
f = atomKK->f;
d_f = atomKK->k_f.d_view;
h_f = atomKK->k_f.h_view;
q = atomKK->q;
d_q = atomKK->k_q.d_view;
h_q = atomKK->k_q.h_view;
mu = atomKK->mu;
d_mu = atomKK->k_mu.d_view;
h_mu = atomKK->k_mu.h_view;
}
/* ----------------------------------------------------------------------
sort atom arrays on device
------------------------------------------------------------------------- */
void AtomVecDipoleKokkos::sort_kokkos(Kokkos::BinSort<KeyViewType, BinOp> &Sorter)
{
atomKK->sync(Device, ALL_MASK & ~F_MASK);
Sorter.sort(LMPDeviceType(), d_tag);
Sorter.sort(LMPDeviceType(), d_type);
Sorter.sort(LMPDeviceType(), d_mask);
Sorter.sort(LMPDeviceType(), d_image);
Sorter.sort(LMPDeviceType(), d_x);
Sorter.sort(LMPDeviceType(), d_v);
Sorter.sort(LMPDeviceType(), d_q);
Sorter.sort(LMPDeviceType(), d_mu);
atomKK->modified(Device, ALL_MASK & ~F_MASK);
}
/* ---------------------------------------------------------------------- */
template<class DeviceType,int PBC_FLAG,int TRICLINIC>
struct AtomVecDipoleKokkos_PackComm {
typedef DeviceType device_type;
typename ArrayTypes<DeviceType>::t_x_array_randomread _x;
typename ArrayTypes<DeviceType>::t_mu_array_randomread _mu;
typename ArrayTypes<DeviceType>::t_xfloat_2d_um _buf;
typename ArrayTypes<DeviceType>::t_int_1d_const _list;
X_FLOAT _xprd,_yprd,_zprd,_xy,_xz,_yz;
X_FLOAT _pbc[6];
AtomVecDipoleKokkos_PackComm(
const typename DAT::tdual_x_array &x,
const typename DAT::tdual_float_1d_4 &mu,
const typename DAT::tdual_xfloat_2d &buf,
const typename DAT::tdual_int_1d &list,
const X_FLOAT &xprd, const X_FLOAT &yprd, const X_FLOAT &zprd,
const X_FLOAT &xy, const X_FLOAT &xz, const X_FLOAT &yz, const int* const pbc):
_x(x.view<DeviceType>()),
_mu(mu.view<DeviceType>()),
_list(list.view<DeviceType>()),
_xprd(xprd),_yprd(yprd),_zprd(zprd),
_xy(xy),_xz(xz),_yz(yz) {
const size_t elements = 7; // size_forward
const size_t maxsend = (buf.view<DeviceType>().extent(0)*buf.view<DeviceType>().extent(1))/elements;
buffer_view<DeviceType>(_buf,buf,maxsend,elements);
_pbc[0] = pbc[0]; _pbc[1] = pbc[1]; _pbc[2] = pbc[2];
_pbc[3] = pbc[3]; _pbc[4] = pbc[4]; _pbc[5] = pbc[5];
};
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
const int j = _list(i);
if (PBC_FLAG == 0) {
_buf(i,0) = _x(j,0);
_buf(i,1) = _x(j,1);
_buf(i,2) = _x(j,2);
_buf(i,3) = _mu(j,0);
_buf(i,4) = _mu(j,1);
_buf(i,5) = _mu(j,2);
_buf(i,6) = _mu(j,3);
} else {
if (TRICLINIC == 0) {
_buf(i,0) = _x(j,0) + _pbc[0]*_xprd;
_buf(i,1) = _x(j,1) + _pbc[1]*_yprd;
_buf(i,2) = _x(j,2) + _pbc[2]*_zprd;
_buf(i,3) = _mu(j,0);
_buf(i,4) = _mu(j,1);
_buf(i,5) = _mu(j,2);
_buf(i,6) = _mu(j,3);
} else {
_buf(i,0) = _x(j,0) + _pbc[0]*_xprd + _pbc[5]*_xy + _pbc[4]*_xz;
_buf(i,1) = _x(j,1) + _pbc[1]*_yprd + _pbc[3]*_yz;
_buf(i,2) = _x(j,2) + _pbc[2]*_zprd;
_buf(i,3) = _mu(j,0);
_buf(i,4) = _mu(j,1);
_buf(i,5) = _mu(j,2);
_buf(i,6) = _mu(j,3);
}
}
}
};
/* ---------------------------------------------------------------------- */
template<class DeviceType,int PBC_FLAG>
struct AtomVecDipoleKokkos_PackBorder {
typedef DeviceType device_type;
typename ArrayTypes<DeviceType>::t_xfloat_2d _buf;
const typename ArrayTypes<DeviceType>::t_int_1d_const _list;
const typename ArrayTypes<DeviceType>::t_x_array_randomread _x;
const typename ArrayTypes<DeviceType>::t_tagint_1d _tag;
const typename ArrayTypes<DeviceType>::t_int_1d _type;
const typename ArrayTypes<DeviceType>::t_int_1d _mask;
const typename ArrayTypes<DeviceType>::t_float_1d _q;
const typename ArrayTypes<DeviceType>::t_mu_array_randomread _mu;
X_FLOAT _dx,_dy,_dz;
AtomVecDipoleKokkos_PackBorder(
const typename ArrayTypes<DeviceType>::t_xfloat_2d &buf,
const typename ArrayTypes<DeviceType>::t_int_1d_const &list,
const typename ArrayTypes<DeviceType>::t_x_array &x,
const typename ArrayTypes<DeviceType>::t_tagint_1d &tag,
const typename ArrayTypes<DeviceType>::t_int_1d &type,
const typename ArrayTypes<DeviceType>::t_int_1d &mask,
const typename ArrayTypes<DeviceType>::t_float_1d &q,
const typename ArrayTypes<DeviceType>::t_mu_array_randomread &mu,
const X_FLOAT &dx, const X_FLOAT &dy, const X_FLOAT &dz):
_buf(buf),_list(list),
_x(x),_tag(tag),_type(type),_mask(mask),_q(q),_mu(mu),
_dx(dx),_dy(dy),_dz(dz) {}
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
const int j = _list(i);
if (PBC_FLAG == 0) {
_buf(i,0) = _x(j,0);
_buf(i,1) = _x(j,1);
_buf(i,2) = _x(j,2);
_buf(i,3) = d_ubuf(_tag(j)).d;
_buf(i,4) = d_ubuf(_type(j)).d;
_buf(i,5) = d_ubuf(_mask(j)).d;
_buf(i,6) = _q(j);
_buf(i,7) = _mu(j,0);
_buf(i,8) = _mu(j,1);
_buf(i,9) = _mu(j,2);
_buf(i,10) = _mu(j,3);
} else {
_buf(i,0) = _x(j,0) + _dx;
_buf(i,1) = _x(j,1) + _dy;
_buf(i,2) = _x(j,2) + _dz;
_buf(i,3) = d_ubuf(_tag(j)).d;
_buf(i,4) = d_ubuf(_type(j)).d;
_buf(i,5) = d_ubuf(_mask(j)).d;
_buf(i,6) = _q(j);
_buf(i,7) = _mu(j,0);
_buf(i,8) = _mu(j,1);
_buf(i,9) = _mu(j,2);
_buf(i,10) = _mu(j,3);
}
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDipoleKokkos::pack_border_kokkos(int n, DAT::tdual_int_1d k_sendlist, DAT::tdual_xfloat_2d buf,
int pbc_flag, int *pbc, ExecutionSpace space)
{
X_FLOAT dx,dy,dz;
if (pbc_flag != 0) {
if (domain->triclinic == 0) {
dx = pbc[0]*domain->xprd;
dy = pbc[1]*domain->yprd;
dz = pbc[2]*domain->zprd;
} else {
dx = pbc[0];
dy = pbc[1];
dz = pbc[2];
}
if (space==Host) {
AtomVecDipoleKokkos_PackBorder<LMPHostType,1> f(
buf.view<LMPHostType>(), k_sendlist.view<LMPHostType>(),
h_x,h_tag,h_type,h_mask,h_q,h_mu,dx,dy,dz);
Kokkos::parallel_for(n,f);
} else {
AtomVecDipoleKokkos_PackBorder<LMPDeviceType,1> f(
buf.view<LMPDeviceType>(), k_sendlist.view<LMPDeviceType>(),
d_x,d_tag,d_type,d_mask,d_q,d_mu,dx,dy,dz);
Kokkos::parallel_for(n,f);
}
} else {
dx = dy = dz = 0;
if (space==Host) {
AtomVecDipoleKokkos_PackBorder<LMPHostType,0> f(
buf.view<LMPHostType>(), k_sendlist.view<LMPHostType>(),
h_x,h_tag,h_type,h_mask,h_q,h_mu,dx,dy,dz);
Kokkos::parallel_for(n,f);
} else {
AtomVecDipoleKokkos_PackBorder<LMPDeviceType,0> f(
buf.view<LMPDeviceType>(), k_sendlist.view<LMPDeviceType>(),
d_x,d_tag,d_type,d_mask,d_q,d_mu,dx,dy,dz);
Kokkos::parallel_for(n,f);
}
}
return n*size_border;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDipoleKokkos_UnpackBorder {
typedef DeviceType device_type;
const typename ArrayTypes<DeviceType>::t_xfloat_2d_const _buf;
typename ArrayTypes<DeviceType>::t_x_array _x;
typename ArrayTypes<DeviceType>::t_tagint_1d _tag;
typename ArrayTypes<DeviceType>::t_int_1d _type;
typename ArrayTypes<DeviceType>::t_int_1d _mask;
typename ArrayTypes<DeviceType>::t_float_1d _q;
typename ArrayTypes<DeviceType>::t_mu_array _mu;
int _first;
AtomVecDipoleKokkos_UnpackBorder(
const typename ArrayTypes<DeviceType>::t_xfloat_2d_const &buf,
typename ArrayTypes<DeviceType>::t_x_array &x,
typename ArrayTypes<DeviceType>::t_tagint_1d &tag,
typename ArrayTypes<DeviceType>::t_int_1d &type,
typename ArrayTypes<DeviceType>::t_int_1d &mask,
typename ArrayTypes<DeviceType>::t_float_1d &q,
typename ArrayTypes<DeviceType>::t_mu_array &mu,
const int& first):
_buf(buf),_x(x),_tag(tag),_type(type),_mask(mask),_q(q),_mu(mu),_first(first) {
};
KOKKOS_INLINE_FUNCTION
void operator() (const int& i) const {
_x(i+_first,0) = _buf(i,0);
_x(i+_first,1) = _buf(i,1);
_x(i+_first,2) = _buf(i,2);
_tag(i+_first) = (tagint) d_ubuf(_buf(i,3)).i;
_type(i+_first) = (int) d_ubuf(_buf(i,4)).i;
_mask(i+_first) = (int) d_ubuf(_buf(i,5)).i;
_q(i+_first) = _buf(i,6);
_mu(i+_first,0) = _buf(i,7);
_mu(i+_first,1) = _buf(i,8);
_mu(i+_first,2) = _buf(i,9);
_mu(i+_first,3) = _buf(i,10);
}
};
/* ---------------------------------------------------------------------- */
void AtomVecDipoleKokkos::unpack_border_kokkos(const int &n, const int &first,
const DAT::tdual_xfloat_2d &buf,ExecutionSpace space) {
atomKK->modified(space,X_MASK|TAG_MASK|TYPE_MASK|MASK_MASK|Q_MASK|MU_MASK);
while (first+n >= nmax) grow(0);
atomKK->modified(space,X_MASK|TAG_MASK|TYPE_MASK|MASK_MASK|Q_MASK|MU_MASK);
if (space==Host) {
struct AtomVecDipoleKokkos_UnpackBorder<LMPHostType>
f(buf.view<LMPHostType>(),h_x,h_tag,h_type,h_mask,h_q,h_mu,first);
Kokkos::parallel_for(n,f);
} else {
struct AtomVecDipoleKokkos_UnpackBorder<LMPDeviceType>
f(buf.view<LMPDeviceType>(),d_x,d_tag,d_type,d_mask,d_q,d_mu,first);
Kokkos::parallel_for(n,f);
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDipoleKokkos_PackExchangeFunctor {
typedef DeviceType device_type;
typedef ArrayTypes<DeviceType> AT;
typename AT::t_x_array_randomread _x;
typename AT::t_v_array_randomread _v;
typename AT::t_tagint_1d_randomread _tag;
typename AT::t_int_1d_randomread _type;
typename AT::t_int_1d_randomread _mask;
typename AT::t_imageint_1d_randomread _image;
typename AT::t_float_1d_randomread _q;
typename AT::t_mu_array_randomread _mu;
typename AT::t_x_array _xw;
typename AT::t_v_array _vw;
typename AT::t_tagint_1d _tagw;
typename AT::t_int_1d _typew;
typename AT::t_int_1d _maskw;
typename AT::t_imageint_1d _imagew;
typename AT::t_float_1d _qw;
typename AT::t_sp_array _muw;
typename AT::t_xfloat_2d_um _buf;
typename AT::t_int_1d_const _sendlist;
typename AT::t_int_1d_const _copylist;
int _size_exchange;
AtomVecDipoleKokkos_PackExchangeFunctor(
const AtomKokkos* atom,
const typename AT::tdual_xfloat_2d buf,
typename AT::tdual_int_1d sendlist,
typename AT::tdual_int_1d copylist):
_x(atom->k_x.view<DeviceType>()),
_v(atom->k_v.view<DeviceType>()),
_tag(atom->k_tag.view<DeviceType>()),
_type(atom->k_type.view<DeviceType>()),
_mask(atom->k_mask.view<DeviceType>()),
_image(atom->k_image.view<DeviceType>()),
_q(atom->k_q.view<DeviceType>()),
_mu(atom->k_mu.view<DeviceType>()),
_xw(atom->k_x.view<DeviceType>()),
_vw(atom->k_v.view<DeviceType>()),
_tagw(atom->k_tag.view<DeviceType>()),
_typew(atom->k_type.view<DeviceType>()),
_maskw(atom->k_mask.view<DeviceType>()),
_imagew(atom->k_image.view<DeviceType>()),
_qw(atom->k_q.view<DeviceType>()),
_muw(atom->k_mu.view<DeviceType>()),
_sendlist(sendlist.template view<DeviceType>()),
_copylist(copylist.template view<DeviceType>()),
_size_exchange(atom->avecKK->size_exchange) {
const int maxsendlist = (buf.template view<DeviceType>().extent(0)*
buf.template view<DeviceType>().extent(1))/_size_exchange;
buffer_view<DeviceType>(_buf,buf,maxsendlist,_size_exchange);
}
KOKKOS_INLINE_FUNCTION
void operator() (const int &mysend) const {
const int i = _sendlist(mysend);
_buf(mysend,0) = _size_exchange;
_buf(mysend,1) = _x(i,0);
_buf(mysend,2) = _x(i,1);
_buf(mysend,3) = _x(i,2);
_buf(mysend,4) = _v(i,0);
_buf(mysend,5) = _v(i,1);
_buf(mysend,6) = _v(i,2);
_buf(mysend,7) = d_ubuf(_tag[i]).d;
_buf(mysend,8) = d_ubuf(_type[i]).d;
_buf(mysend,9) = d_ubuf(_mask[i]).d;
_buf(mysend,10) = d_ubuf(_image[i]).d;
_buf(mysend,11) = _q[i];
_buf(mysend,12) = _mu(i,0);
_buf(mysend,13) = _mu(i,1);
_buf(mysend,14) = _mu(i,2);
_buf(mysend,15) = _mu(i,3);
const int j = _copylist(mysend);
if (j>-1) {
_xw(i,0) = _x(j,0);
_xw(i,1) = _x(j,1);
_xw(i,2) = _x(j,2);
_vw(i,0) = _v(j,0);
_vw(i,1) = _v(j,1);
_vw(i,2) = _v(j,2);
_tagw(i) = _tag(j);
_typew(i) = _type(j);
_maskw(i) = _mask(j);
_imagew(i) = _image(j);
_qw(i) = _q(j);
_muw(i,0) = _mu(j,0);
_muw(i,1) = _mu(j,1);
_muw(i,2) = _mu(j,2);
_muw(i,3) = _mu(j,3);
}
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDipoleKokkos::pack_exchange_kokkos(const int &nsend,DAT::tdual_xfloat_2d &k_buf,
DAT::tdual_int_1d k_sendlist,
DAT::tdual_int_1d k_copylist,
ExecutionSpace space)
{
size_exchange = 16; // # of elements packed
if (nsend > (int) (k_buf.view<LMPHostType>().extent(0)*k_buf.view<LMPHostType>().extent(1))/12) {
int newsize = nsend*size_exchange/k_buf.view<LMPHostType>().extent(1)+1;
k_buf.resize(newsize,k_buf.view<LMPHostType>().extent(1));
}
if (space == Host) {
AtomVecDipoleKokkos_PackExchangeFunctor<LMPHostType>
f(atomKK,k_buf,k_sendlist,k_copylist);
Kokkos::parallel_for(nsend,f);
return nsend*size_exchange;
} else {
AtomVecDipoleKokkos_PackExchangeFunctor<LMPDeviceType>
f(atomKK,k_buf,k_sendlist,k_copylist);
Kokkos::parallel_for(nsend,f);
return nsend*size_exchange;
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
struct AtomVecDipoleKokkos_UnpackExchangeFunctor {
typedef DeviceType device_type;
typedef ArrayTypes<DeviceType> AT;
typename AT::t_x_array _x;
typename AT::t_v_array _v;
typename AT::t_tagint_1d _tag;
typename AT::t_int_1d _type;
typename AT::t_int_1d _mask;
typename AT::t_imageint_1d _image;
typename AT::t_float_1d _q;
typename AT::t_mu_array _mu;
typename AT::t_xfloat_2d_um _buf;
typename AT::t_int_1d _nlocal;
int _dim;
X_FLOAT _lo,_hi;
int _size_exchange;
AtomVecDipoleKokkos_UnpackExchangeFunctor(
const AtomKokkos* atom,
const typename AT::tdual_xfloat_2d buf,
typename AT::tdual_int_1d nlocal,
int dim, X_FLOAT lo, X_FLOAT hi):
_x(atom->k_x.view<DeviceType>()),
_v(atom->k_v.view<DeviceType>()),
_tag(atom->k_tag.view<DeviceType>()),
_type(atom->k_type.view<DeviceType>()),
_mask(atom->k_mask.view<DeviceType>()),
_image(atom->k_image.view<DeviceType>()),
_q(atom->k_q.view<DeviceType>()),
_mu(atom->k_mu.view<DeviceType>()),
_nlocal(nlocal.template view<DeviceType>()),
_dim(dim),_lo(lo),_hi(hi),_size_exchange(atom->avecKK->size_exchange) {
const int maxsendlist = (buf.template view<DeviceType>().extent(0)*buf.template view<DeviceType>().extent(1))/_size_exchange;
buffer_view<DeviceType>(_buf,buf,maxsendlist,_size_exchange);
}
KOKKOS_INLINE_FUNCTION
void operator() (const int &myrecv) const {
X_FLOAT x = _buf(myrecv,_dim+1);
if (x >= _lo && x < _hi) {
int i = Kokkos::atomic_fetch_add(&_nlocal(0),1);
_x(i,0) = _buf(myrecv,1);
_x(i,1) = _buf(myrecv,2);
_x(i,2) = _buf(myrecv,3);
_v(i,0) = _buf(myrecv,4);
_v(i,1) = _buf(myrecv,5);
_v(i,2) = _buf(myrecv,6);
_tag[i] = (tagint) d_ubuf(_buf(myrecv,7)).i;
_type[i] = (int) d_ubuf(_buf(myrecv,8)).i;
_mask[i] = (int) d_ubuf(_buf(myrecv,9)).i;
_image[i] = (imageint) d_ubuf(_buf(myrecv,10)).i;
_q[i] = _buf(myrecv,11);
_mu(i,0) = _buf(myrecv,12);
_mu(i,1) = _buf(myrecv,13);
_mu(i,2) = _buf(myrecv,14);
_mu(i,3) = _buf(myrecv,15);
}
}
};
/* ---------------------------------------------------------------------- */
int AtomVecDipoleKokkos::unpack_exchange_kokkos(DAT::tdual_xfloat_2d &k_buf, int nrecv, int nlocal,
int dim, X_FLOAT lo, X_FLOAT hi, ExecutionSpace space,
DAT::tdual_int_1d &/*k_indices*/)
{
if (space == Host) {
k_count.h_view(0) = nlocal;
AtomVecDipoleKokkos_UnpackExchangeFunctor<LMPHostType> f(atomKK,k_buf,k_count,dim,lo,hi);
Kokkos::parallel_for(nrecv/size_exchange,f);
return k_count.h_view(0);
} else {
k_count.h_view(0) = nlocal;
k_count.modify<LMPHostType>();
k_count.sync<LMPDeviceType>();
AtomVecDipoleKokkos_UnpackExchangeFunctor<LMPDeviceType>
f(atomKK,k_buf,k_count,dim,lo,hi);
Kokkos::parallel_for(nrecv/size_exchange,f);
k_count.modify<LMPDeviceType>();
k_count.sync<LMPHostType>();
return k_count.h_view(0);
}
}
/* ---------------------------------------------------------------------- */
void AtomVecDipoleKokkos::sync(ExecutionSpace space, unsigned int mask)
{
if (space == Device) {
if (mask & X_MASK) atomKK->k_x.sync<LMPDeviceType>();
if (mask & V_MASK) atomKK->k_v.sync<LMPDeviceType>();
if (mask & F_MASK) atomKK->k_f.sync<LMPDeviceType>();
if (mask & TAG_MASK) atomKK->k_tag.sync<LMPDeviceType>();
if (mask & TYPE_MASK) atomKK->k_type.sync<LMPDeviceType>();
if (mask & MASK_MASK) atomKK->k_mask.sync<LMPDeviceType>();
if (mask & IMAGE_MASK) atomKK->k_image.sync<LMPDeviceType>();
if (mask & Q_MASK) atomKK->k_q.sync<LMPDeviceType>();
if (mask & MU_MASK) atomKK->k_mu.sync<LMPDeviceType>();
} else {
if (mask & X_MASK) atomKK->k_x.sync<LMPHostType>();
if (mask & V_MASK) atomKK->k_v.sync<LMPHostType>();
if (mask & F_MASK) atomKK->k_f.sync<LMPHostType>();
if (mask & TAG_MASK) atomKK->k_tag.sync<LMPHostType>();
if (mask & TYPE_MASK) atomKK->k_type.sync<LMPHostType>();
if (mask & MASK_MASK) atomKK->k_mask.sync<LMPHostType>();
if (mask & IMAGE_MASK) atomKK->k_image.sync<LMPHostType>();
if (mask & Q_MASK) atomKK->k_q.sync<LMPHostType>();
if (mask & MU_MASK) atomKK->k_mu.sync<LMPHostType>();
}
}
/* ---------------------------------------------------------------------- */
void AtomVecDipoleKokkos::modified(ExecutionSpace space, unsigned int mask)
{
if (space == Device) {
if (mask & X_MASK) atomKK->k_x.modify<LMPDeviceType>();
if (mask & V_MASK) atomKK->k_v.modify<LMPDeviceType>();
if (mask & F_MASK) atomKK->k_f.modify<LMPDeviceType>();
if (mask & TAG_MASK) atomKK->k_tag.modify<LMPDeviceType>();
if (mask & TYPE_MASK) atomKK->k_type.modify<LMPDeviceType>();
if (mask & MASK_MASK) atomKK->k_mask.modify<LMPDeviceType>();
if (mask & IMAGE_MASK) atomKK->k_image.modify<LMPDeviceType>();
if (mask & Q_MASK) atomKK->k_q.modify<LMPDeviceType>();
if (mask & MU_MASK) atomKK->k_mu.modify<LMPDeviceType>();
} else {
if (mask & X_MASK) atomKK->k_x.modify<LMPHostType>();
if (mask & V_MASK) atomKK->k_v.modify<LMPHostType>();
if (mask & F_MASK) atomKK->k_f.modify<LMPHostType>();
if (mask & TAG_MASK) atomKK->k_tag.modify<LMPHostType>();
if (mask & TYPE_MASK) atomKK->k_type.modify<LMPHostType>();
if (mask & MASK_MASK) atomKK->k_mask.modify<LMPHostType>();
if (mask & IMAGE_MASK) atomKK->k_image.modify<LMPHostType>();
if (mask & Q_MASK) atomKK->k_q.modify<LMPHostType>();
if (mask & MU_MASK) atomKK->k_mu.modify<LMPHostType>();
}
}
/* ---------------------------------------------------------------------- */
void AtomVecDipoleKokkos::sync_overlapping_device(ExecutionSpace space, unsigned int mask)
{
if (space == Device) {
if ((mask & X_MASK) && atomKK->k_x.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_x_array>(atomKK->k_x,space);
if ((mask & V_MASK) && atomKK->k_v.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_v_array>(atomKK->k_v,space);
if ((mask & F_MASK) && atomKK->k_f.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_f_array>(atomKK->k_f,space);
if ((mask & TAG_MASK) && atomKK->k_tag.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_tagint_1d>(atomKK->k_tag,space);
if ((mask & TYPE_MASK) && atomKK->k_type.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_type,space);
if ((mask & MASK_MASK) && atomKK->k_mask.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_mask,space);
if ((mask & IMAGE_MASK) && atomKK->k_image.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_imageint_1d>(atomKK->k_image,space);
if ((mask & Q_MASK) && atomKK->k_q.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_float_1d>(atomKK->k_q,space);
if ((mask & MU_MASK) && atomKK->k_mu.need_sync<LMPDeviceType>())
perform_async_copy<DAT::tdual_float_1d_4>(atomKK->k_mu,space);
} else {
if ((mask & X_MASK) && atomKK->k_x.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_x_array>(atomKK->k_x,space);
if ((mask & V_MASK) && atomKK->k_v.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_v_array>(atomKK->k_v,space);
if ((mask & F_MASK) && atomKK->k_f.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_f_array>(atomKK->k_f,space);
if ((mask & TAG_MASK) && atomKK->k_tag.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_tagint_1d>(atomKK->k_tag,space);
if ((mask & TYPE_MASK) && atomKK->k_type.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_type,space);
if ((mask & MASK_MASK) && atomKK->k_mask.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_int_1d>(atomKK->k_mask,space);
if ((mask & IMAGE_MASK) && atomKK->k_image.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_imageint_1d>(atomKK->k_image,space);
if ((mask & Q_MASK) && atomKK->k_q.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_float_1d>(atomKK->k_q,space);
if ((mask & MU_MASK) && atomKK->k_mu.need_sync<LMPHostType>())
perform_async_copy<DAT::tdual_float_1d_4>(atomKK->k_mu,space);
}
}