Files
lammps/lib/linalg/dgetf2.cpp
2022-12-28 13:18:38 -05:00

267 lines
7.3 KiB
C++

/* fortran/dgetf2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = -1.;
/* > \brief \b DGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row
interchanges (unblocked algorithm). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGETF2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgetf2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgetf2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgetf2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGETF2( M, N, A, LDA, IPIV, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, LDA, M, N */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* DOUBLE PRECISION A( LDA, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGETF2 computes an LU factorization of a general m-by-n matrix A */
/* > using partial pivoting with row interchanges. */
/* > */
/* > The factorization has the form */
/* > A = P * L * U */
/* > where P is a permutation matrix, L is lower triangular with unit */
/* > diagonal elements (lower trapezoidal if m > n), and U is upper */
/* > triangular (upper trapezoidal if m < n). */
/* > */
/* > This is the right-looking Level 2 BLAS version of the algorithm. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the m by n matrix to be factored. */
/* > On exit, the factors L and U from the factorization */
/* > A = P*L*U; the unit diagonal elements of L are not stored. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (min(M,N)) */
/* > The pivot indices; for 1 <= i <= min(M,N), row i of the */
/* > matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -k, the k-th argument had an illegal value */
/* > > 0: if INFO = k, U(k,k) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, and division by zero will occur if it is used */
/* > to solve a system of equations. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleGEcomputational */
/* ===================================================================== */
/* Subroutine */ int dgetf2_(integer *m, integer *n, doublereal *a, integer *
lda, integer *ipiv, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublereal d__1;
/* Local variables */
integer i__, j, jp;
extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *), dscal_(integer *, doublereal *, doublereal *, integer
*);
doublereal sfmin;
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
extern doublereal dlamch_(char *, ftnlen);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DGETF2", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
/* Compute machine safe minimum */
sfmin = dlamch_((char *)"S", (ftnlen)1);
i__1 = min(*m,*n);
for (j = 1; j <= i__1; ++j) {
/* Find pivot and test for singularity. */
i__2 = *m - j + 1;
jp = j - 1 + idamax_(&i__2, &a[j + j * a_dim1], &c__1);
ipiv[j] = jp;
if (a[jp + j * a_dim1] != 0.) {
/* Apply the interchange to columns 1:N. */
if (jp != j) {
dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
}
/* Compute elements J+1:M of J-th column. */
if (j < *m) {
if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
i__2 = *m - j;
d__1 = 1. / a[j + j * a_dim1];
dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
} else {
i__2 = *m - j;
for (i__ = 1; i__ <= i__2; ++i__) {
a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
/* L20: */
}
}
}
} else if (*info == 0) {
*info = j;
}
if (j < min(*m,*n)) {
/* Update trailing submatrix. */
i__2 = *m - j;
i__3 = *n - j;
dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
}
/* L10: */
}
return 0;
/* End of DGETF2 */
} /* dgetf2_ */
#ifdef __cplusplus
}
#endif