265 lines
7.6 KiB
C++
265 lines
7.6 KiB
C++
/* fortran/dlasd5.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b DLASD5 computes the square root of the i-th eigenvalue of a positive symmetric rank-one modific
|
|
ation of a 2-by-2 diagonal matrix. Used by sbdsdc. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLASD5 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd5.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd5.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd5.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* INTEGER I */
|
|
/* DOUBLE PRECISION DSIGMA, RHO */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > This subroutine computes the square root of the I-th eigenvalue */
|
|
/* > of a positive symmetric rank-one modification of a 2-by-2 diagonal */
|
|
/* > matrix */
|
|
/* > */
|
|
/* > diag( D ) * diag( D ) + RHO * Z * transpose(Z) . */
|
|
/* > */
|
|
/* > The diagonal entries in the array D are assumed to satisfy */
|
|
/* > */
|
|
/* > 0 <= D(i) < D(j) for i < j . */
|
|
/* > */
|
|
/* > We also assume RHO > 0 and that the Euclidean norm of the vector */
|
|
/* > Z is one. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] I */
|
|
/* > \verbatim */
|
|
/* > I is INTEGER */
|
|
/* > The index of the eigenvalue to be computed. I = 1 or I = 2. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] D */
|
|
/* > \verbatim */
|
|
/* > D is DOUBLE PRECISION array, dimension ( 2 ) */
|
|
/* > The original eigenvalues. We assume 0 <= D(1) < D(2). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] Z */
|
|
/* > \verbatim */
|
|
/* > Z is DOUBLE PRECISION array, dimension ( 2 ) */
|
|
/* > The components of the updating vector. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] DELTA */
|
|
/* > \verbatim */
|
|
/* > DELTA is DOUBLE PRECISION array, dimension ( 2 ) */
|
|
/* > Contains (D(j) - sigma_I) in its j-th component. */
|
|
/* > The vector DELTA contains the information necessary */
|
|
/* > to construct the eigenvectors. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] RHO */
|
|
/* > \verbatim */
|
|
/* > RHO is DOUBLE PRECISION */
|
|
/* > The scalar in the symmetric updating formula. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] DSIGMA */
|
|
/* > \verbatim */
|
|
/* > DSIGMA is DOUBLE PRECISION */
|
|
/* > The computed sigma_I, the I-th updated eigenvalue. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension ( 2 ) */
|
|
/* > WORK contains (D(j) + sigma_I) in its j-th component. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup OTHERauxiliary */
|
|
|
|
/* > \par Contributors: */
|
|
/* ================== */
|
|
/* > */
|
|
/* > Ren-Cang Li, Computer Science Division, University of California */
|
|
/* > at Berkeley, USA */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dlasd5_(integer *i__, doublereal *d__, doublereal *z__,
|
|
doublereal *delta, doublereal *rho, doublereal *dsigma, doublereal *
|
|
work)
|
|
{
|
|
/* System generated locals */
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
doublereal b, c__, w, del, tau, delsq;
|
|
|
|
|
|
/* -- LAPACK auxiliary routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Parameter adjustments */
|
|
--work;
|
|
--delta;
|
|
--z__;
|
|
--d__;
|
|
|
|
/* Function Body */
|
|
del = d__[2] - d__[1];
|
|
delsq = del * (d__[2] + d__[1]);
|
|
if (*i__ == 1) {
|
|
w = *rho * 4. * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.) - z__[1] *
|
|
z__[1] / (d__[1] * 3. + d__[2])) / del + 1.;
|
|
if (w > 0.) {
|
|
b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
|
|
c__ = *rho * z__[1] * z__[1] * delsq;
|
|
|
|
/* B > ZERO, always */
|
|
|
|
/* The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */
|
|
|
|
tau = c__ * 2. / (b + sqrt((d__1 = b * b - c__ * 4., abs(d__1))));
|
|
|
|
/* The following TAU is DSIGMA - D( 1 ) */
|
|
|
|
tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
|
|
*dsigma = d__[1] + tau;
|
|
delta[1] = -tau;
|
|
delta[2] = del - tau;
|
|
work[1] = d__[1] * 2. + tau;
|
|
work[2] = d__[1] + tau + d__[2];
|
|
/* DELTA( 1 ) = -Z( 1 ) / TAU */
|
|
/* DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */
|
|
} else {
|
|
b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
|
|
c__ = *rho * z__[2] * z__[2] * delsq;
|
|
|
|
/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
|
|
|
|
if (b > 0.) {
|
|
tau = c__ * -2. / (b + sqrt(b * b + c__ * 4.));
|
|
} else {
|
|
tau = (b - sqrt(b * b + c__ * 4.)) / 2.;
|
|
}
|
|
|
|
/* The following TAU is DSIGMA - D( 2 ) */
|
|
|
|
tau /= d__[2] + sqrt((d__1 = d__[2] * d__[2] + tau, abs(d__1)));
|
|
*dsigma = d__[2] + tau;
|
|
delta[1] = -(del + tau);
|
|
delta[2] = -tau;
|
|
work[1] = d__[1] + tau + d__[2];
|
|
work[2] = d__[2] * 2. + tau;
|
|
/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
|
|
/* DELTA( 2 ) = -Z( 2 ) / TAU */
|
|
}
|
|
/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
|
|
/* DELTA( 1 ) = DELTA( 1 ) / TEMP */
|
|
/* DELTA( 2 ) = DELTA( 2 ) / TEMP */
|
|
} else {
|
|
|
|
/* Now I=2 */
|
|
|
|
b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
|
|
c__ = *rho * z__[2] * z__[2] * delsq;
|
|
|
|
/* The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
|
|
|
|
if (b > 0.) {
|
|
tau = (b + sqrt(b * b + c__ * 4.)) / 2.;
|
|
} else {
|
|
tau = c__ * 2. / (-b + sqrt(b * b + c__ * 4.));
|
|
}
|
|
|
|
/* The following TAU is DSIGMA - D( 2 ) */
|
|
|
|
tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
|
|
*dsigma = d__[2] + tau;
|
|
delta[1] = -(del + tau);
|
|
delta[2] = -tau;
|
|
work[1] = d__[1] + tau + d__[2];
|
|
work[2] = d__[2] * 2. + tau;
|
|
/* DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
|
|
/* DELTA( 2 ) = -Z( 2 ) / TAU */
|
|
/* TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
|
|
/* DELTA( 1 ) = DELTA( 1 ) / TEMP */
|
|
/* DELTA( 2 ) = DELTA( 2 ) / TEMP */
|
|
}
|
|
return 0;
|
|
|
|
/* End of DLASD5 */
|
|
|
|
} /* dlasd5_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|