Files
lammps/lib/linalg/dsymv.cpp
2022-12-28 13:18:38 -05:00

389 lines
10 KiB
C++

/* fortran/dsymv.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b DSYMV */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE DSYMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) */
/* .. Scalar Arguments .. */
/* DOUBLE PRECISION ALPHA,BETA */
/* INTEGER INCX,INCY,LDA,N */
/* CHARACTER UPLO */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A(LDA,*),X(*),Y(*) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSYMV performs the matrix-vector operation */
/* > */
/* > y := alpha*A*x + beta*y, */
/* > */
/* > where alpha and beta are scalars, x and y are n element vectors and */
/* > A is an n by n symmetric matrix. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > On entry, UPLO specifies whether the upper or lower */
/* > triangular part of the array A is to be referenced as */
/* > follows: */
/* > */
/* > UPLO = 'U' or 'u' Only the upper triangular part of A */
/* > is to be referenced. */
/* > */
/* > UPLO = 'L' or 'l' Only the lower triangular part of A */
/* > is to be referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > On entry, N specifies the order of the matrix A. */
/* > N must be at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] ALPHA */
/* > \verbatim */
/* > ALPHA is DOUBLE PRECISION. */
/* > On entry, ALPHA specifies the scalar alpha. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension ( LDA, N ) */
/* > Before entry with UPLO = 'U' or 'u', the leading n by n */
/* > upper triangular part of the array A must contain the upper */
/* > triangular part of the symmetric matrix and the strictly */
/* > lower triangular part of A is not referenced. */
/* > Before entry with UPLO = 'L' or 'l', the leading n by n */
/* > lower triangular part of the array A must contain the lower */
/* > triangular part of the symmetric matrix and the strictly */
/* > upper triangular part of A is not referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > On entry, LDA specifies the first dimension of A as declared */
/* > in the calling (sub) program. LDA must be at least */
/* > max( 1, n ). */
/* > \endverbatim */
/* > */
/* > \param[in] X */
/* > \verbatim */
/* > X is DOUBLE PRECISION array, dimension at least */
/* > ( 1 + ( n - 1 )*abs( INCX ) ). */
/* > Before entry, the incremented array X must contain the n */
/* > element vector x. */
/* > \endverbatim */
/* > */
/* > \param[in] INCX */
/* > \verbatim */
/* > INCX is INTEGER */
/* > On entry, INCX specifies the increment for the elements of */
/* > X. INCX must not be zero. */
/* > \endverbatim */
/* > */
/* > \param[in] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION. */
/* > On entry, BETA specifies the scalar beta. When BETA is */
/* > supplied as zero then Y need not be set on input. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Y */
/* > \verbatim */
/* > Y is DOUBLE PRECISION array, dimension at least */
/* > ( 1 + ( n - 1 )*abs( INCY ) ). */
/* > Before entry, the incremented array Y must contain the n */
/* > element vector y. On exit, Y is overwritten by the updated */
/* > vector y. */
/* > \endverbatim */
/* > */
/* > \param[in] INCY */
/* > \verbatim */
/* > INCY is INTEGER */
/* > On entry, INCY specifies the increment for the elements of */
/* > Y. INCY must not be zero. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup double_blas_level2 */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Level 2 Blas routine. */
/* > The vector and matrix arguments are not referenced when N = 0, or M = 0 */
/* > */
/* > -- Written on 22-October-1986. */
/* > Jack Dongarra, Argonne National Lab. */
/* > Jeremy Du Croz, Nag Central Office. */
/* > Sven Hammarling, Nag Central Office. */
/* > Richard Hanson, Sandia National Labs. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dsymv_(char *uplo, integer *n, doublereal *alpha,
doublereal *a, integer *lda, doublereal *x, integer *incx, doublereal
*beta, doublereal *y, integer *incy, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, j, ix, iy, jx, jy, kx, ky, info;
doublereal temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* -- Reference BLAS level2 routine -- */
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
--y;
/* Function Body */
info = 0;
if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*lda < max(1,*n)) {
info = 5;
} else if (*incx == 0) {
info = 7;
} else if (*incy == 0) {
info = 10;
}
if (info != 0) {
xerbla_((char *)"DSYMV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || *alpha == 0. && *beta == 1.) {
return 0;
}
/* Set up the start points in X and Y. */
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through the triangular part */
/* of A. */
/* First form y := beta*y. */
if (*beta != 1.) {
if (*incy == 1) {
if (*beta == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = 0.;
/* L10: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[i__] = *beta * y[i__];
/* L20: */
}
}
} else {
iy = ky;
if (*beta == 0.) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = 0.;
iy += *incy;
/* L30: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
y[iy] = *beta * y[iy];
iy += *incy;
/* L40: */
}
}
}
}
if (*alpha == 0.) {
return 0;
}
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
/* Form y when A is stored in upper triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
y[i__] += temp1 * a[i__ + j * a_dim1];
temp2 += a[i__ + j * a_dim1] * x[i__];
/* L50: */
}
y[j] = y[j] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
/* L60: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.;
ix = kx;
iy = ky;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
y[iy] += temp1 * a[i__ + j * a_dim1];
temp2 += a[i__ + j * a_dim1] * x[ix];
ix += *incx;
iy += *incy;
/* L70: */
}
y[jy] = y[jy] + temp1 * a[j + j * a_dim1] + *alpha * temp2;
jx += *incx;
jy += *incy;
/* L80: */
}
}
} else {
/* Form y when A is stored in lower triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[j];
temp2 = 0.;
y[j] += temp1 * a[j + j * a_dim1];
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
y[i__] += temp1 * a[i__ + j * a_dim1];
temp2 += a[i__ + j * a_dim1] * x[i__];
/* L90: */
}
y[j] += *alpha * temp2;
/* L100: */
}
} else {
jx = kx;
jy = ky;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * x[jx];
temp2 = 0.;
y[jy] += temp1 * a[j + j * a_dim1];
ix = jx;
iy = jy;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
ix += *incx;
iy += *incy;
y[iy] += temp1 * a[i__ + j * a_dim1];
temp2 += a[i__ + j * a_dim1] * x[ix];
/* L110: */
}
y[jy] += *alpha * temp2;
jx += *incx;
jy += *incy;
/* L120: */
}
}
}
return 0;
/* End of DSYMV */
} /* dsymv_ */
#ifdef __cplusplus
}
#endif