Files
lammps/lib/linalg/dsytd2.cpp
2022-12-28 13:18:38 -05:00

390 lines
12 KiB
C++

/* fortran/dsytd2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = 0.;
static doublereal c_b14 = -1.;
/* > \brief \b DSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarit
y transformation (unblocked algorithm). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DSYTD2 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytd2.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytd2.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytd2.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, LDA, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAU( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal */
/* > form T by an orthogonal similarity transformation: Q**T * A * Q = T. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > Specifies whether the upper or lower triangular part of the */
/* > symmetric matrix A is stored: */
/* > = 'U': Upper triangular */
/* > = 'L': Lower triangular */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* > n-by-n upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading n-by-n lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
/* > of A are overwritten by the corresponding elements of the */
/* > tridiagonal matrix T, and the elements above the first */
/* > superdiagonal, with the array TAU, represent the orthogonal */
/* > matrix Q as a product of elementary reflectors; if UPLO */
/* > = 'L', the diagonal and first subdiagonal of A are over- */
/* > written by the corresponding elements of the tridiagonal */
/* > matrix T, and the elements below the first subdiagonal, with */
/* > the array TAU, represent the orthogonal matrix Q as a product */
/* > of elementary reflectors. See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] D */
/* > \verbatim */
/* > D is DOUBLE PRECISION array, dimension (N) */
/* > The diagonal elements of the tridiagonal matrix T: */
/* > D(i) = A(i,i). */
/* > \endverbatim */
/* > */
/* > \param[out] E */
/* > \verbatim */
/* > E is DOUBLE PRECISION array, dimension (N-1) */
/* > The off-diagonal elements of the tridiagonal matrix T: */
/* > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (N-1) */
/* > The scalar factors of the elementary reflectors (see Further */
/* > Details). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleSYcomputational */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(n-1) . . . H(2) H(1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
/* > A(1:i-1,i+1), and tau in TAU(i). */
/* > */
/* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
/* > reflectors */
/* > */
/* > Q = H(1) H(2) . . . H(n-1). */
/* > */
/* > Each H(i) has the form */
/* > */
/* > H(i) = I - tau * v * v**T */
/* > */
/* > where tau is a real scalar, and v is a real vector with */
/* > v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
/* > and tau in TAU(i). */
/* > */
/* > The contents of A on exit are illustrated by the following examples */
/* > with n = 5: */
/* > */
/* > if UPLO = 'U': if UPLO = 'L': */
/* > */
/* > ( d e v2 v3 v4 ) ( d ) */
/* > ( d e v3 v4 ) ( e d ) */
/* > ( d e v4 ) ( v1 e d ) */
/* > ( d e ) ( v1 v2 e d ) */
/* > ( d ) ( v1 v2 v3 e d ) */
/* > */
/* > where d and e denote diagonal and off-diagonal elements of T, and vi */
/* > denotes an element of the vector defining H(i). */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *
lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info,
ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
integer i__;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal taui;
extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, ftnlen);
doublereal alpha;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *, ftnlen), dlarfg_(integer *, doublereal *,
doublereal *, integer *, doublereal *), xerbla_(char *, integer *
, ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--d__;
--e;
--tau;
/* Function Body */
*info = 0;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DSYTD2", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*n <= 0) {
return 0;
}
if (upper) {
/* Reduce the upper triangle of A */
for (i__ = *n - 1; i__ >= 1; --i__) {
/* Generate elementary reflector H(i) = I - tau * v * v**T */
/* to annihilate A(1:i-1,i+1) */
dlarfg_(&i__, &a[i__ + (i__ + 1) * a_dim1], &a[(i__ + 1) * a_dim1
+ 1], &c__1, &taui);
e[i__] = a[i__ + (i__ + 1) * a_dim1];
if (taui != 0.) {
/* Apply H(i) from both sides to A(1:i,1:i) */
a[i__ + (i__ + 1) * a_dim1] = 1.;
/* Compute x := tau * A * v storing x in TAU(1:i) */
dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
a_dim1 + 1], &c__1, &c_b8, &tau[1], &c__1, (ftnlen)1);
/* Compute w := x - 1/2 * tau * (x**T * v) * v */
alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a[(i__ + 1)
* a_dim1 + 1], &c__1);
daxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
1], &c__1);
/* Apply the transformation as a rank-2 update: */
/* A := A - v * w**T - w * v**T */
dsyr2_(uplo, &i__, &c_b14, &a[(i__ + 1) * a_dim1 + 1], &c__1,
&tau[1], &c__1, &a[a_offset], lda, (ftnlen)1);
a[i__ + (i__ + 1) * a_dim1] = e[i__];
}
d__[i__ + 1] = a[i__ + 1 + (i__ + 1) * a_dim1];
tau[i__] = taui;
/* L10: */
}
d__[1] = a[a_dim1 + 1];
} else {
/* Reduce the lower triangle of A */
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) = I - tau * v * v**T */
/* to annihilate A(i+2:n,i) */
i__2 = *n - i__;
/* Computing MIN */
i__3 = i__ + 2;
dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ *
a_dim1], &c__1, &taui);
e[i__] = a[i__ + 1 + i__ * a_dim1];
if (taui != 0.) {
/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
a[i__ + 1 + i__ * a_dim1] = 1.;
/* Compute x := tau * A * v storing y in TAU(i:n-1) */
i__2 = *n - i__;
dsymv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b8, &tau[
i__], &c__1, (ftnlen)1);
/* Compute w := x - 1/2 * tau * (x**T * v) * v */
i__2 = *n - i__;
alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a[i__ +
1 + i__ * a_dim1], &c__1);
i__2 = *n - i__;
daxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
i__], &c__1);
/* Apply the transformation as a rank-2 update: */
/* A := A - v * w**T - w * v**T */
i__2 = *n - i__;
dsyr2_(uplo, &i__2, &c_b14, &a[i__ + 1 + i__ * a_dim1], &c__1,
&tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1],
lda, (ftnlen)1);
a[i__ + 1 + i__ * a_dim1] = e[i__];
}
d__[i__] = a[i__ + i__ * a_dim1];
tau[i__] = taui;
/* L20: */
}
d__[*n] = a[*n + *n * a_dim1];
}
return 0;
/* End of DSYTD2 */
} /* dsytd2_ */
#ifdef __cplusplus
}
#endif