290 lines
7.6 KiB
C++
290 lines
7.6 KiB
C++
/* fortran/zgerc.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b ZGERC */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZGERC(M,N,ALPHA,X,INCX,Y,INCY,A,LDA) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* COMPLEX*16 ALPHA */
|
|
/* INTEGER INCX,INCY,LDA,M,N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 A(LDA,*),X(*),Y(*) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZGERC performs the rank 1 operation */
|
|
/* > */
|
|
/* > A := alpha*x*y**H + A, */
|
|
/* > */
|
|
/* > where alpha is a scalar, x is an m element vector, y is an n element */
|
|
/* > vector and A is an m by n matrix. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > On entry, M specifies the number of rows of the matrix A. */
|
|
/* > M must be at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > On entry, N specifies the number of columns of the matrix A. */
|
|
/* > N must be at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is COMPLEX*16 */
|
|
/* > On entry, ALPHA specifies the scalar alpha. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] X */
|
|
/* > \verbatim */
|
|
/* > X is COMPLEX*16 array, dimension at least */
|
|
/* > ( 1 + ( m - 1 )*abs( INCX ) ). */
|
|
/* > Before entry, the incremented array X must contain the m */
|
|
/* > element vector x. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INCX */
|
|
/* > \verbatim */
|
|
/* > INCX is INTEGER */
|
|
/* > On entry, INCX specifies the increment for the elements of */
|
|
/* > X. INCX must not be zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] Y */
|
|
/* > \verbatim */
|
|
/* > Y is COMPLEX*16 array, dimension at least */
|
|
/* > ( 1 + ( n - 1 )*abs( INCY ) ). */
|
|
/* > Before entry, the incremented array Y must contain the n */
|
|
/* > element vector y. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INCY */
|
|
/* > \verbatim */
|
|
/* > INCY is INTEGER */
|
|
/* > On entry, INCY specifies the increment for the elements of */
|
|
/* > Y. INCY must not be zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension ( LDA, N ) */
|
|
/* > Before entry, the leading m by n part of the array A must */
|
|
/* > contain the matrix of coefficients. On exit, A is */
|
|
/* > overwritten by the updated matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > On entry, LDA specifies the first dimension of A as declared */
|
|
/* > in the calling (sub) program. LDA must be at least */
|
|
/* > max( 1, m ). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16_blas_level2 */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Level 2 Blas routine. */
|
|
/* > */
|
|
/* > -- Written on 22-October-1986. */
|
|
/* > Jack Dongarra, Argonne National Lab. */
|
|
/* > Jeremy Du Croz, Nag Central Office. */
|
|
/* > Sven Hammarling, Nag Central Office. */
|
|
/* > Richard Hanson, Sandia National Labs. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zgerc_(integer *m, integer *n, doublecomplex *alpha,
|
|
doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
|
|
doublecomplex *a, integer *lda)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
|
doublecomplex z__1, z__2;
|
|
|
|
/* Builtin functions */
|
|
void d_cnjg(doublecomplex *, doublecomplex *);
|
|
|
|
/* Local variables */
|
|
integer i__, j, ix, jy, kx, info;
|
|
doublecomplex temp;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
|
|
|
|
/* -- Reference BLAS level2 routine -- */
|
|
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--x;
|
|
--y;
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
info = 0;
|
|
if (*m < 0) {
|
|
info = 1;
|
|
} else if (*n < 0) {
|
|
info = 2;
|
|
} else if (*incx == 0) {
|
|
info = 5;
|
|
} else if (*incy == 0) {
|
|
info = 7;
|
|
} else if (*lda < max(1,*m)) {
|
|
info = 9;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_((char *)"ZGERC ", &info, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0.) {
|
|
return 0;
|
|
}
|
|
|
|
/* Start the operations. In this version the elements of A are */
|
|
/* accessed sequentially with one pass through A. */
|
|
|
|
if (*incy > 0) {
|
|
jy = 1;
|
|
} else {
|
|
jy = 1 - (*n - 1) * *incy;
|
|
}
|
|
if (*incx == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = jy;
|
|
if (y[i__2].r != 0. || y[i__2].i != 0.) {
|
|
d_cnjg(&z__2, &y[jy]);
|
|
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
|
|
alpha->r * z__2.i + alpha->i * z__2.r;
|
|
temp.r = z__1.r, temp.i = z__1.i;
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = i__ + j * a_dim1;
|
|
i__5 = i__;
|
|
z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
|
|
x[i__5].r * temp.i + x[i__5].i * temp.r;
|
|
z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
|
|
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
|
|
/* L10: */
|
|
}
|
|
}
|
|
jy += *incy;
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
if (*incx > 0) {
|
|
kx = 1;
|
|
} else {
|
|
kx = 1 - (*m - 1) * *incx;
|
|
}
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = jy;
|
|
if (y[i__2].r != 0. || y[i__2].i != 0.) {
|
|
d_cnjg(&z__2, &y[jy]);
|
|
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
|
|
alpha->r * z__2.i + alpha->i * z__2.r;
|
|
temp.r = z__1.r, temp.i = z__1.i;
|
|
ix = kx;
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = i__ + j * a_dim1;
|
|
i__5 = ix;
|
|
z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i, z__2.i =
|
|
x[i__5].r * temp.i + x[i__5].i * temp.r;
|
|
z__1.r = a[i__4].r + z__2.r, z__1.i = a[i__4].i + z__2.i;
|
|
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
|
|
ix += *incx;
|
|
/* L30: */
|
|
}
|
|
}
|
|
jy += *incy;
|
|
/* L40: */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of ZGERC */
|
|
|
|
} /* zgerc_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|