406 lines
11 KiB
C++
406 lines
11 KiB
C++
/* fortran/zhpr.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b ZHPR */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZHPR(UPLO,N,ALPHA,X,INCX,AP) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* DOUBLE PRECISION ALPHA */
|
|
/* INTEGER INCX,N */
|
|
/* CHARACTER UPLO */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 AP(*),X(*) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZHPR performs the hermitian rank 1 operation */
|
|
/* > */
|
|
/* > A := alpha*x*x**H + A, */
|
|
/* > */
|
|
/* > where alpha is a real scalar, x is an n element vector and A is an */
|
|
/* > n by n hermitian matrix, supplied in packed form. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > On entry, UPLO specifies whether the upper or lower */
|
|
/* > triangular part of the matrix A is supplied in the packed */
|
|
/* > array AP as follows: */
|
|
/* > */
|
|
/* > UPLO = 'U' or 'u' The upper triangular part of A is */
|
|
/* > supplied in AP. */
|
|
/* > */
|
|
/* > UPLO = 'L' or 'l' The lower triangular part of A is */
|
|
/* > supplied in AP. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > On entry, N specifies the order of the matrix A. */
|
|
/* > N must be at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is DOUBLE PRECISION. */
|
|
/* > On entry, ALPHA specifies the scalar alpha. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] X */
|
|
/* > \verbatim */
|
|
/* > X is COMPLEX*16 array, dimension at least */
|
|
/* > ( 1 + ( n - 1 )*abs( INCX ) ). */
|
|
/* > Before entry, the incremented array X must contain the n */
|
|
/* > element vector x. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INCX */
|
|
/* > \verbatim */
|
|
/* > INCX is INTEGER */
|
|
/* > On entry, INCX specifies the increment for the elements of */
|
|
/* > X. INCX must not be zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AP */
|
|
/* > \verbatim */
|
|
/* > AP is COMPLEX*16 array, dimension at least */
|
|
/* > ( ( n*( n + 1 ) )/2 ). */
|
|
/* > Before entry with UPLO = 'U' or 'u', the array AP must */
|
|
/* > contain the upper triangular part of the hermitian matrix */
|
|
/* > packed sequentially, column by column, so that AP( 1 ) */
|
|
/* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
|
/* > and a( 2, 2 ) respectively, and so on. On exit, the array */
|
|
/* > AP is overwritten by the upper triangular part of the */
|
|
/* > updated matrix. */
|
|
/* > Before entry with UPLO = 'L' or 'l', the array AP must */
|
|
/* > contain the lower triangular part of the hermitian matrix */
|
|
/* > packed sequentially, column by column, so that AP( 1 ) */
|
|
/* > contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
|
/* > and a( 3, 1 ) respectively, and so on. On exit, the array */
|
|
/* > AP is overwritten by the lower triangular part of the */
|
|
/* > updated matrix. */
|
|
/* > Note that the imaginary parts of the diagonal elements need */
|
|
/* > not be set, they are assumed to be zero, and on exit they */
|
|
/* > are set to zero. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16_blas_level2 */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Level 2 Blas routine. */
|
|
/* > */
|
|
/* > -- Written on 22-October-1986. */
|
|
/* > Jack Dongarra, Argonne National Lab. */
|
|
/* > Jeremy Du Croz, Nag Central Office. */
|
|
/* > Sven Hammarling, Nag Central Office. */
|
|
/* > Richard Hanson, Sandia National Labs. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zhpr_(char *uplo, integer *n, doublereal *alpha,
|
|
doublecomplex *x, integer *incx, doublecomplex *ap, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2, i__3, i__4, i__5;
|
|
doublereal d__1;
|
|
doublecomplex z__1, z__2;
|
|
|
|
/* Builtin functions */
|
|
void d_cnjg(doublecomplex *, doublecomplex *);
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, kk, ix, jx, kx, info;
|
|
doublecomplex temp;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
|
|
|
|
/* -- Reference BLAS level2 routine -- */
|
|
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--ap;
|
|
--x;
|
|
|
|
/* Function Body */
|
|
info = 0;
|
|
if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", (
|
|
ftnlen)1, (ftnlen)1)) {
|
|
info = 1;
|
|
} else if (*n < 0) {
|
|
info = 2;
|
|
} else if (*incx == 0) {
|
|
info = 5;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_((char *)"ZHPR ", &info, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*n == 0 || *alpha == 0.) {
|
|
return 0;
|
|
}
|
|
|
|
/* Set the start point in X if the increment is not unity. */
|
|
|
|
if (*incx <= 0) {
|
|
kx = 1 - (*n - 1) * *incx;
|
|
} else if (*incx != 1) {
|
|
kx = 1;
|
|
}
|
|
|
|
/* Start the operations. In this version the elements of the array AP */
|
|
/* are accessed sequentially with one pass through AP. */
|
|
|
|
kk = 1;
|
|
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Form A when upper triangle is stored in AP. */
|
|
|
|
if (*incx == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0.) {
|
|
d_cnjg(&z__2, &x[j]);
|
|
z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
|
|
temp.r = z__1.r, temp.i = z__1.i;
|
|
k = kk;
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = k;
|
|
i__4 = k;
|
|
i__5 = i__;
|
|
z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
|
|
z__2.i = x[i__5].r * temp.i + x[i__5].i *
|
|
temp.r;
|
|
z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i +
|
|
z__2.i;
|
|
ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
|
|
++k;
|
|
/* L10: */
|
|
}
|
|
i__2 = kk + j - 1;
|
|
i__3 = kk + j - 1;
|
|
i__4 = j;
|
|
z__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__1.i =
|
|
x[i__4].r * temp.i + x[i__4].i * temp.r;
|
|
d__1 = ap[i__3].r + z__1.r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
} else {
|
|
i__2 = kk + j - 1;
|
|
i__3 = kk + j - 1;
|
|
d__1 = ap[i__3].r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
}
|
|
kk += j;
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
jx = kx;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = jx;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0.) {
|
|
d_cnjg(&z__2, &x[jx]);
|
|
z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
|
|
temp.r = z__1.r, temp.i = z__1.i;
|
|
ix = kx;
|
|
i__2 = kk + j - 2;
|
|
for (k = kk; k <= i__2; ++k) {
|
|
i__3 = k;
|
|
i__4 = k;
|
|
i__5 = ix;
|
|
z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
|
|
z__2.i = x[i__5].r * temp.i + x[i__5].i *
|
|
temp.r;
|
|
z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i +
|
|
z__2.i;
|
|
ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
|
|
ix += *incx;
|
|
/* L30: */
|
|
}
|
|
i__2 = kk + j - 1;
|
|
i__3 = kk + j - 1;
|
|
i__4 = jx;
|
|
z__1.r = x[i__4].r * temp.r - x[i__4].i * temp.i, z__1.i =
|
|
x[i__4].r * temp.i + x[i__4].i * temp.r;
|
|
d__1 = ap[i__3].r + z__1.r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
} else {
|
|
i__2 = kk + j - 1;
|
|
i__3 = kk + j - 1;
|
|
d__1 = ap[i__3].r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
}
|
|
jx += *incx;
|
|
kk += j;
|
|
/* L40: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form A when lower triangle is stored in AP. */
|
|
|
|
if (*incx == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0.) {
|
|
d_cnjg(&z__2, &x[j]);
|
|
z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
|
|
temp.r = z__1.r, temp.i = z__1.i;
|
|
i__2 = kk;
|
|
i__3 = kk;
|
|
i__4 = j;
|
|
z__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__1.i =
|
|
temp.r * x[i__4].i + temp.i * x[i__4].r;
|
|
d__1 = ap[i__3].r + z__1.r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
k = kk + 1;
|
|
i__2 = *n;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
i__3 = k;
|
|
i__4 = k;
|
|
i__5 = i__;
|
|
z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
|
|
z__2.i = x[i__5].r * temp.i + x[i__5].i *
|
|
temp.r;
|
|
z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i +
|
|
z__2.i;
|
|
ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
|
|
++k;
|
|
/* L50: */
|
|
}
|
|
} else {
|
|
i__2 = kk;
|
|
i__3 = kk;
|
|
d__1 = ap[i__3].r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
}
|
|
kk = kk + *n - j + 1;
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
jx = kx;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = jx;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0.) {
|
|
d_cnjg(&z__2, &x[jx]);
|
|
z__1.r = *alpha * z__2.r, z__1.i = *alpha * z__2.i;
|
|
temp.r = z__1.r, temp.i = z__1.i;
|
|
i__2 = kk;
|
|
i__3 = kk;
|
|
i__4 = jx;
|
|
z__1.r = temp.r * x[i__4].r - temp.i * x[i__4].i, z__1.i =
|
|
temp.r * x[i__4].i + temp.i * x[i__4].r;
|
|
d__1 = ap[i__3].r + z__1.r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
ix = jx;
|
|
i__2 = kk + *n - j;
|
|
for (k = kk + 1; k <= i__2; ++k) {
|
|
ix += *incx;
|
|
i__3 = k;
|
|
i__4 = k;
|
|
i__5 = ix;
|
|
z__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
|
|
z__2.i = x[i__5].r * temp.i + x[i__5].i *
|
|
temp.r;
|
|
z__1.r = ap[i__4].r + z__2.r, z__1.i = ap[i__4].i +
|
|
z__2.i;
|
|
ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
|
|
/* L70: */
|
|
}
|
|
} else {
|
|
i__2 = kk;
|
|
i__3 = kk;
|
|
d__1 = ap[i__3].r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
}
|
|
jx += *incx;
|
|
kk = kk + *n - j + 1;
|
|
/* L80: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of ZHPR */
|
|
|
|
} /* zhpr_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|