Files
lammps/tools/msi2lmp/test/reference/phen3_cff97-class1.data2

283 lines
6.9 KiB
Plaintext

LAMMPS data file via write_data, version 8 Jul 2013-ICMS, timestep = 44
23 atoms
7 atom types
23 bonds
9 bond types
39 angles
16 angle types
54 dihedrals
19 dihedral types
7 impropers
3 improper types
-9.8334503200000001e-01 4.1194155219999997e+00 xlo xhi
-6.4800081250000003e+00 2.8460192680000000e+00 ylo yhi
-3.2154743670000001e+00 1.4167015549999999e+00 zlo zhi
Masses
1 14.0067
2 1.00797
3 12.0112
4 1.00797
5 12.0112
6 15.9994
7 12.0112
Pair Coeffs
1 0.167 3.50123
2 0 0
3 0.16 3.47451
4 0.038 2.44997
5 0.148 3.61705
6 0.228 2.85978
7 0.148 3.61705
Bond Coeffs
1 356.599 1.47
2 457.459 1.026
3 340.618 1.105
4 283.092 1.52
5 322.716 1.526
6 540 1.25
7 283.092 1.51
8 480 1.34
9 363.416 1.08
Angle Coeffs
1 41.6 110
2 36 105.5
3 57.3 109.5
4 50 109.5
5 50 109.5
6 45 109.5
7 44.4 110
8 46.6 110.5
9 68 120
10 145 123
11 46.6 110.5
12 39.5 106.4
13 44.4 110
14 44.2 120
15 90 120
16 37 120
Dihedral Coeffs
1 0.0889 1 3
2 0.0889 1 3
3 0.0889 1 3
4 0 1 0
5 0 1 0
6 0 1 0
7 0.1581 1 3
8 0.1581 1 3
9 0.1581 1 3
10 0.1581 1 3
11 0.1581 1 3
12 0.1581 1 3
13 0 1 2
14 0 1 2
15 3 -1 2
16 3 -1 2
17 3 -1 2
18 3 -1 2
19 3 -1 2
Improper Coeffs
1 11.6 -1 2
2 0.37 -1 2
3 0.37 -1 2
Atoms
1 1 1 -4.4999999999999998e-02 4.4383377760609055e-01 9.3529621367154800e-02 4.2472692728145883e-02 0 0 0
2 1 2 2.8000000000000003e-01 -3.7610901843993866e-01 -5.2027432419078867e-01 2.5566270234685291e-02 0 0 0
3 1 2 2.8000000000000003e-01 3.1154080580149707e-01 8.7748395270313084e-01 6.6197494212506724e-01 0 0 0
4 1 2 2.8000000000000003e-01 3.0616269150114883e-01 1.0159249276077778e+00 -2.3413071660736429e-01 0 0 0
5 1 3 -7.8000000000000000e-02 1.8040023570330670e+00 -3.4950274729470915e-01 1.2016082830607204e-02 0 0 0
6 1 4 5.2999999999999999e-02 2.1397831482330849e+00 -8.2951540461971540e-01 9.5217465992248274e-01 0 0 0
7 1 5 2.9740000000000000e-01 1.5970512640712546e+00 1.0112181624422094e+00 6.7919448040535575e-03 0 0 0
8 1 6 -5.3369999999999995e-01 2.3586408920196940e+00 1.9422780493809306e+00 -1.4768176857741837e-02 0 0 0
9 1 6 -5.3369999999999995e-01 3.0616269150114894e-01 1.0159249276077780e+00 -2.3413071660736431e-01 0 0 0
10 1 3 -1.0600000000000000e-01 2.2838228922613606e+00 -8.3152528830974193e-01 -1.3421130120346356e+00 0 0 0
11 1 4 5.2999999999999999e-02 1.8490713132789456e+00 -2.0517913692827638e-01 -2.1425644978572103e+00 0 0 0
12 1 4 5.2999999999999999e-02 3.3651275102044358e+00 -6.8157012690490881e-01 -1.4210694655303691e+00 0 0 0
13 1 7 0.0000000000000000e+00 1.9104671394717871e+00 -2.2824174034863969e+00 -1.5271364923717932e+00 0 0 0
14 1 7 -1.3053000000000001e-01 8.1716237428224414e-01 -2.6713938409510907e+00 -2.1317260874129107e+00 0 0 0
15 1 4 1.3053000000000001e-01 1.4381888619033692e-01 -1.9476227832883477e+00 -2.5765751735685876e+00 0 0 0
16 1 7 -1.3053000000000001e-01 4.7742453503786225e-01 -3.9780745863877987e+00 -2.2215637809749915e+00 0 0 0
17 1 4 1.3053000000000001e-01 -4.3011717316381526e-01 -4.2813175651722624e+00 -2.7145658650445861e+00 0 0 0
18 1 7 -1.3053000000000001e-01 1.2925323669117965e+00 -4.8814166344131884e+00 -1.6397741335417644e+00 0 0 0
19 1 4 1.3053000000000001e-01 1.0305623173017204e+00 -5.9290561764276717e+00 -1.6999397628331958e+00 0 0 0
20 1 7 -1.3053000000000001e-01 2.3649148316507564e+00 -4.5028529385495277e+00 -9.8564853232383332e-01 0 0 0
21 1 4 1.3053000000000001e-01 3.0078981843784272e+00 -5.2303898574170331e+00 -4.7000751130828416e-01 0 0 0
22 1 7 -1.3053000000000001e-01 2.6795724658503821e+00 -3.1983718959390184e+00 -8.9361781935964046e-01 0 0 0
23 1 4 1.3053000000000001e-01 3.5209511380167151e+00 -2.8872252648285079e+00 -3.2043508741077048e-01 0 0 0
Velocities
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
Bonds
1 1 1 5
2 2 1 2
3 2 1 3
4 2 1 4
5 3 5 6
6 4 5 7
7 5 5 10
8 6 7 9
9 6 7 8
10 3 10 11
11 3 10 12
12 7 10 13
13 8 13 14
14 8 13 22
15 8 14 16
16 9 15 14
17 8 16 18
18 9 17 16
19 8 18 20
20 9 19 18
21 8 20 22
22 9 21 20
23 9 23 22
Angles
1 1 2 1 5
2 1 3 1 5
3 1 4 1 5
4 2 2 1 3
5 2 2 1 4
6 2 3 1 4
7 3 1 5 6
8 4 1 5 7
9 5 1 5 10
10 6 6 5 7
11 7 10 5 6
12 8 10 5 7
13 9 5 7 9
14 9 5 7 8
15 10 9 7 8
16 7 5 10 11
17 7 5 10 12
18 11 5 10 13
19 12 11 10 12
20 13 11 10 13
21 13 12 10 13
22 14 10 13 14
23 14 10 13 22
24 15 14 13 22
25 16 15 14 13
26 15 13 14 16
27 16 15 14 16
28 16 17 16 14
29 15 14 16 18
30 16 17 16 18
31 16 19 18 16
32 15 16 18 20
33 16 19 18 20
34 16 21 20 18
35 15 18 20 22
36 16 21 20 22
37 16 23 22 20
38 15 20 22 13
39 16 23 22 13
Dihedrals
1 1 2 1 5 6
2 2 2 1 5 7
3 3 2 1 5 10
4 1 3 1 5 6
5 2 3 1 5 7
6 3 3 1 5 10
7 1 4 1 5 6
8 2 4 1 5 7
9 3 4 1 5 10
10 4 1 5 7 9
11 4 1 5 7 8
12 5 6 5 7 9
13 5 6 5 7 8
14 6 10 5 7 9
15 6 10 5 7 8
16 7 1 5 10 11
17 7 1 5 10 12
18 8 1 5 10 13
19 9 6 5 10 11
20 9 6 5 10 12
21 10 6 5 10 13
22 12 7 5 10 13
23 11 11 10 5 7
24 11 12 10 5 7
25 13 5 10 13 14
26 13 5 10 13 22
27 14 11 10 13 14
28 14 11 10 13 22
29 14 12 10 13 14
30 14 12 10 13 22
31 15 10 13 14 15
32 16 10 13 14 16
33 18 22 13 14 16
34 16 10 13 22 20
35 15 10 13 22 23
36 18 14 13 22 20
37 17 15 14 13 22
38 18 13 14 16 18
39 19 15 14 16 17
40 17 15 14 16 18
41 17 17 16 14 13
42 18 14 16 18 20
43 19 17 16 18 19
44 17 17 16 18 20
45 17 19 18 16 14
46 18 16 18 20 22
47 19 19 18 20 21
48 17 19 18 20 22
49 17 21 20 18 16
50 18 18 20 22 13
51 19 21 20 22 23
52 17 21 20 22 13
53 17 23 22 13 14
54 17 23 22 20 18
Impropers
1 1 5 7 9 8
2 2 10 13 14 22
3 3 15 14 13 16
4 3 17 16 14 18
5 3 19 18 16 20
6 3 21 20 18 22
7 3 23 22 20 13