Files
lammps/src/compute_orientorder_atom.cpp
2020-04-24 12:18:53 -06:00

910 lines
26 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Aidan Thompson (SNL)
Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "compute_orientorder_atom.h"
#include <cstring>
#include <cstdlib>
#include <cmath>
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "pair.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
#include "math_const.h"
using namespace LAMMPS_NS;
using namespace MathConst;
using namespace std;
#ifdef DBL_EPSILON
#define MY_EPSILON (10.0*DBL_EPSILON)
#else
#define MY_EPSILON (10.0*2.220446049250313e-16)
#endif
#define QEPSILON 1.0e-6
/* ---------------------------------------------------------------------- */
ComputeOrientOrderAtom::ComputeOrientOrderAtom(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg),
qlist(NULL), distsq(NULL), nearest(NULL), rlist(NULL),
qnarray(NULL), qnm_r(NULL), qnm_i(NULL), cglist(NULL)
{
if (narg < 3 ) error->all(FLERR,"Illegal compute orientorder/atom command");
// set default values for optional args
nnn = 12;
cutsq = 0.0;
wlflag = 0;
wlhatflag = 0;
qlcompflag = 0;
chunksize = 16384;
// specify which orders to request
nqlist = 5;
memory->create(qlist,nqlist,"orientorder/atom:qlist");
qlist[0] = 4;
qlist[1] = 6;
qlist[2] = 8;
qlist[3] = 10;
qlist[4] = 12;
qmax = 12;
// process optional args
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"nnn") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (strcmp(arg[iarg+1],"NULL") == 0) {
nnn = 0;
} else {
nnn = force->numeric(FLERR,arg[iarg+1]);
if (nnn <= 0)
error->all(FLERR,"Illegal compute orientorder/atom command");
}
iarg += 2;
} else if (strcmp(arg[iarg],"degrees") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
nqlist = force->numeric(FLERR,arg[iarg+1]);
if (nqlist <= 0)
error->all(FLERR,"Illegal compute orientorder/atom command");
memory->destroy(qlist);
memory->create(qlist,nqlist,"orientorder/atom:qlist");
iarg += 2;
if (iarg+nqlist > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
qmax = 0;
for (int il = 0; il < nqlist; il++) {
qlist[il] = force->numeric(FLERR,arg[iarg+il]);
if (qlist[il] < 0)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (qlist[il] > qmax) qmax = qlist[il];
}
iarg += nqlist;
} else if (strcmp(arg[iarg],"wl") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (strcmp(arg[iarg+1],"yes") == 0) wlflag = 1;
else if (strcmp(arg[iarg+1],"no") == 0) wlflag = 0;
else error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"wl/hat") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
if (strcmp(arg[iarg+1],"yes") == 0) wlhatflag = 1;
else if (strcmp(arg[iarg+1],"no") == 0) wlhatflag = 0;
else error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"components") == 0) {
qlcompflag = 1;
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
qlcomp = force->numeric(FLERR,arg[iarg+1]);
iqlcomp = -1;
for (int il = 0; il < nqlist; il++)
if (qlcomp == qlist[il]) {
iqlcomp = il;
break;
}
if (iqlcomp == -1)
error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else if (strcmp(arg[iarg],"cutoff") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
double cutoff = force->numeric(FLERR,arg[iarg+1]);
if (cutoff <= 0.0)
error->all(FLERR,"Illegal compute orientorder/atom command");
cutsq = cutoff*cutoff;
iarg += 2;
} else if (strcmp(arg[iarg],"chunksize") == 0) {
if (iarg+2 > narg)
error->all(FLERR,"Illegal compute orientorder/atom command");
chunksize = force->numeric(FLERR,arg[iarg+1]);
if (chunksize <= 0)
error->all(FLERR,"Illegal compute orientorder/atom command");
iarg += 2;
} else error->all(FLERR,"Illegal compute orientorder/atom command");
}
ncol = nqlist;
if (wlflag) ncol += nqlist;
if (wlhatflag) ncol += nqlist;
if (qlcompflag) ncol += 2*(2*qlcomp+1);
peratom_flag = 1;
size_peratom_cols = ncol;
nmax = 0;
maxneigh = 0;
}
/* ---------------------------------------------------------------------- */
ComputeOrientOrderAtom::~ComputeOrientOrderAtom()
{
if (copymode) return;
memory->destroy(qnarray);
memory->destroy(distsq);
memory->destroy(rlist);
memory->destroy(nearest);
memory->destroy(qlist);
memory->destroy(qnm_r);
memory->destroy(qnm_i);
memory->destroy(cglist);
}
/* ---------------------------------------------------------------------- */
void ComputeOrientOrderAtom::init()
{
if (force->pair == NULL)
error->all(FLERR,"Compute orientorder/atom requires a "
"pair style be defined");
if (cutsq == 0.0) cutsq = force->pair->cutforce * force->pair->cutforce;
else if (sqrt(cutsq) > force->pair->cutforce)
error->all(FLERR,"Compute orientorder/atom cutoff is "
"longer than pairwise cutoff");
memory->create(qnm_r,nqlist,2*qmax+1,"orientorder/atom:qnm_r");
memory->create(qnm_i,nqlist,2*qmax+1,"orientorder/atom:qnm_i");
// need an occasional full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style,"orientorder/atom") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute orientorder/atom");
if (wlflag || wlhatflag) init_clebsch_gordan();
}
/* ---------------------------------------------------------------------- */
void ComputeOrientOrderAtom::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeOrientOrderAtom::compute_peratom()
{
int i,j,ii,jj,inum,jnum;
double xtmp,ytmp,ztmp,delx,dely,delz,rsq;
int *ilist,*jlist,*numneigh,**firstneigh;
invoked_peratom = update->ntimestep;
// grow order parameter array if necessary
if (atom->nmax > nmax) {
memory->destroy(qnarray);
nmax = atom->nmax;
memory->create(qnarray,nmax,ncol,"orientorder/atom:qnarray");
array_atom = qnarray;
}
// invoke full neighbor list (will copy or build if necessary)
neighbor->build_one(list);
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// compute order parameter for each atom in group
// use full neighbor list to count atoms less than cutoff
double **x = atom->x;
int *mask = atom->mask;
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
double* qn = qnarray[i];
if (mask[i] & groupbit) {
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
jlist = firstneigh[i];
jnum = numneigh[i];
// insure distsq and nearest arrays are long enough
if (jnum > maxneigh) {
memory->destroy(distsq);
memory->destroy(rlist);
memory->destroy(nearest);
maxneigh = jnum;
memory->create(distsq,maxneigh,"orientorder/atom:distsq");
memory->create(rlist,maxneigh,3,"orientorder/atom:rlist");
memory->create(nearest,maxneigh,"orientorder/atom:nearest");
}
// loop over list of all neighbors within force cutoff
// distsq[] = distance sq to each
// rlist[] = distance vector to each
// nearest[] = atom indices of neighbors
int ncount = 0;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
if (rsq < cutsq) {
distsq[ncount] = rsq;
rlist[ncount][0] = delx;
rlist[ncount][1] = dely;
rlist[ncount][2] = delz;
nearest[ncount++] = j;
}
}
// if not nnn neighbors, order parameter = 0;
if ((ncount == 0) || (ncount < nnn)) {
for (int jj = 0; jj < ncol; jj++)
qn[jj] = 0.0;
continue;
}
// if nnn > 0, use only nearest nnn neighbors
if (nnn > 0) {
select3(nnn,ncount,distsq,nearest,rlist);
ncount = nnn;
}
calc_boop(rlist, ncount, qn, qlist, nqlist);
}
}
}
/* ----------------------------------------------------------------------
memory usage of local atom-based array
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::memory_usage()
{
double bytes = ncol*nmax * sizeof(double);
bytes += (qmax*(2*qmax+1)+maxneigh*4) * sizeof(double);
bytes += (nqlist+maxneigh) * sizeof(int);
return bytes;
}
/* ----------------------------------------------------------------------
select3 routine from Numerical Recipes (slightly modified)
find k smallest values in array of length n
sort auxiliary arrays at same time
------------------------------------------------------------------------- */
// Use no-op do while to create single statement
#define SWAP(a,b) do { \
tmp = a; a = b; b = tmp; \
} while(0)
#define ISWAP(a,b) do { \
itmp = a; a = b; b = itmp; \
} while(0)
#define SWAP3(a,b) do { \
tmp = a[0]; a[0] = b[0]; b[0] = tmp; \
tmp = a[1]; a[1] = b[1]; b[1] = tmp; \
tmp = a[2]; a[2] = b[2]; b[2] = tmp; \
} while(0)
/* ---------------------------------------------------------------------- */
void ComputeOrientOrderAtom::select3(int k, int n, double *arr, int *iarr, double **arr3)
{
int i,ir,j,l,mid,ia,itmp;
double a,tmp,a3[3];
arr--;
iarr--;
arr3--;
l = 1;
ir = n;
for (;;) {
if (ir <= l+1) {
if (ir == l+1 && arr[ir] < arr[l]) {
SWAP(arr[l],arr[ir]);
ISWAP(iarr[l],iarr[ir]);
SWAP3(arr3[l],arr3[ir]);
}
return;
} else {
mid=(l+ir) >> 1;
SWAP(arr[mid],arr[l+1]);
ISWAP(iarr[mid],iarr[l+1]);
SWAP3(arr3[mid],arr3[l+1]);
if (arr[l] > arr[ir]) {
SWAP(arr[l],arr[ir]);
ISWAP(iarr[l],iarr[ir]);
SWAP3(arr3[l],arr3[ir]);
}
if (arr[l+1] > arr[ir]) {
SWAP(arr[l+1],arr[ir]);
ISWAP(iarr[l+1],iarr[ir]);
SWAP3(arr3[l+1],arr3[ir]);
}
if (arr[l] > arr[l+1]) {
SWAP(arr[l],arr[l+1]);
ISWAP(iarr[l],iarr[l+1]);
SWAP3(arr3[l],arr3[l+1]);
}
i = l+1;
j = ir;
a = arr[l+1];
ia = iarr[l+1];
a3[0] = arr3[l+1][0];
a3[1] = arr3[l+1][1];
a3[2] = arr3[l+1][2];
for (;;) {
do i++; while (arr[i] < a);
do j--; while (arr[j] > a);
if (j < i) break;
SWAP(arr[i],arr[j]);
ISWAP(iarr[i],iarr[j]);
SWAP3(arr3[i],arr3[j]);
}
arr[l+1] = arr[j];
arr[j] = a;
iarr[l+1] = iarr[j];
iarr[j] = ia;
arr3[l+1][0] = arr3[j][0];
arr3[l+1][1] = arr3[j][1];
arr3[l+1][2] = arr3[j][2];
arr3[j][0] = a3[0];
arr3[j][1] = a3[1];
arr3[j][2] = a3[2];
if (j >= k) ir = j-1;
if (j <= k) l = i;
}
}
}
/* ----------------------------------------------------------------------
calculate the bond orientational order parameters
------------------------------------------------------------------------- */
void ComputeOrientOrderAtom::calc_boop(double **rlist,
int ncount, double qn[],
int qlist[], int nqlist) {
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m = 0; m < 2*l+1; m++) {
qnm_r[il][m] = 0.0;
qnm_i[il][m] = 0.0;
}
}
for(int ineigh = 0; ineigh < ncount; ineigh++) {
const double * const r = rlist[ineigh];
double rmag = dist(r);
if(rmag <= MY_EPSILON) {
return;
}
double costheta = r[2] / rmag;
double expphi_r = r[0];
double expphi_i = r[1];
double rxymag = sqrt(expphi_r*expphi_r+expphi_i*expphi_i);
if(rxymag <= MY_EPSILON) {
expphi_r = 1.0;
expphi_i = 0.0;
} else {
double rxymaginv = 1.0/rxymag;
expphi_r *= rxymaginv;
expphi_i *= rxymaginv;
}
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
qnm_r[il][l] += polar_prefactor(l, 0, costheta);
double expphim_r = expphi_r;
double expphim_i = expphi_i;
for(int m = 1; m <= +l; m++) {
double prefactor = polar_prefactor(l, m, costheta);
double c_r = prefactor * expphim_r;
double c_i = prefactor * expphim_i;
qnm_r[il][m+l] += c_r;
qnm_i[il][m+l] += c_i;
if(m & 1) {
qnm_r[il][-m+l] -= c_r;
qnm_i[il][-m+l] += c_i;
} else {
qnm_r[il][-m+l] += c_r;
qnm_i[il][-m+l] -= c_i;
}
double tmp_r = expphim_r*expphi_r - expphim_i*expphi_i;
double tmp_i = expphim_r*expphi_i + expphim_i*expphi_r;
expphim_r = tmp_r;
expphim_i = tmp_i;
}
}
}
// convert sums to averages
double facn = 1.0 / ncount;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m = 0; m < 2*l+1; m++) {
qnm_r[il][m] *= facn;
qnm_i[il][m] *= facn;
}
}
// calculate Q_l
// NOTE: optional W_l_hat and components of Q_qlcomp use these stored Q_l values
int jj = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double qnormfac = sqrt(MY_4PI/(2*l+1));
double qm_sum = 0.0;
for(int m = 0; m < 2*l+1; m++)
qm_sum += qnm_r[il][m]*qnm_r[il][m] + qnm_i[il][m]*qnm_i[il][m];
qn[jj++] = qnormfac * sqrt(qm_sum);
}
// TODO:
// 1. [done]Need to allocate extra memory in qnarray[] for this option
// 2. [done]Need to add keyword option
// 3. [done]Need to calculate Clebsch-Gordan/Wigner 3j coefficients
// (Can try getting them from boop.py first)
// 5. [done]Compare to bcc values in /Users/athomps/netapp/codes/MatMiner/matminer/matminer/featurizers/boop.py
// 6. [done]I get the right answer for W_l, but need to make sure that factor of 1/sqrt(l+1) is right for cglist
// 7. Add documentation
// 8. [done] run valgrind
// 9. [done] Add Wlhat
// 10. Update memory_usage()
// 11. Add exact FCC values for W_4, W_4_hat
// calculate W_l
if (wlflag) {
int idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double wlsum = 0.0;
for(int m1 = 0; m1 < 2*l+1; m1++) {
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
int m = m1 + m2 - l;
double qm1qm2_r = qnm_r[il][m1]*qnm_r[il][m2] - qnm_i[il][m1]*qnm_i[il][m2];
double qm1qm2_i = qnm_r[il][m1]*qnm_i[il][m2] + qnm_i[il][m1]*qnm_r[il][m2];
wlsum += (qm1qm2_r*qnm_r[il][m] + qm1qm2_i*qnm_i[il][m])*cglist[idxcg_count];
idxcg_count++;
}
}
qn[jj++] = wlsum/sqrt(2*l+1);
}
}
// calculate W_l_hat
if (wlhatflag) {
int idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
double wlsum = 0.0;
for(int m1 = 0; m1 < 2*l+1; m1++) {
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
int m = m1 + m2 - l;
double qm1qm2_r = qnm_r[il][m1]*qnm_r[il][m2] - qnm_i[il][m1]*qnm_i[il][m2];
double qm1qm2_i = qnm_r[il][m1]*qnm_i[il][m2] + qnm_i[il][m1]*qnm_r[il][m2];
wlsum += (qm1qm2_r*qnm_r[il][m] + qm1qm2_i*qnm_i[il][m])*cglist[idxcg_count];
idxcg_count++;
}
}
// Whats = [w/(q/np.sqrt(np.pi * 4 / (2 * l + 1)))**3 if abs(q) > 1.0e-6 else 0.0 for l,q,w in zip(range(1,max_l+1),Qs,Ws)]
if (qn[il] < QEPSILON)
qn[jj++] = 0.0;
else {
double qnormfac = sqrt(MY_4PI/(2*l+1));
double qnfac = qnormfac/qn[il];
qn[jj++] = wlsum/sqrt(2*l+1)*(qnfac*qnfac*qnfac);
}
}
}
// Calculate components of Q_l, for l=qlcomp
if (qlcompflag) {
int il = iqlcomp;
int l = qlcomp;
if (qn[il] < QEPSILON)
for(int m = 0; m < 2*l+1; m++) {
qn[jj++] = 0.0;
qn[jj++] = 0.0;
}
else {
double qnormfac = sqrt(MY_4PI/(2*l+1));
double qnfac = qnormfac/qn[il];
for(int m = 0; m < 2*l+1; m++) {
qn[jj++] = qnm_r[il][m] * qnfac;
qn[jj++] = qnm_i[il][m] * qnfac;
}
}
}
}
/* ----------------------------------------------------------------------
calculate scalar distance
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::dist(const double r[])
{
return sqrt(r[0]*r[0] + r[1]*r[1] + r[2]*r[2]);
}
/* ----------------------------------------------------------------------
polar prefactor for spherical harmonic Y_l^m, where
Y_l^m (theta, phi) = prefactor(l, m, cos(theta)) * exp(i*m*phi)
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::polar_prefactor(int l, int m, double costheta)
{
const int mabs = abs(m);
double prefactor = 1.0;
for (int i=l-mabs+1; i < l+mabs+1; ++i)
prefactor *= static_cast<double>(i);
prefactor = sqrt(static_cast<double>(2*l+1)/(MY_4PI*prefactor))
* associated_legendre(l,mabs,costheta);
if ((m < 0) && (m % 2)) prefactor = -prefactor;
return prefactor;
}
/* ----------------------------------------------------------------------
associated legendre polynomial
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::associated_legendre(int l, int m, double x)
{
if (l < m) return 0.0;
double p(1.0), pm1(0.0), pm2(0.0);
if (m != 0) {
const double sqx = sqrt(1.0-x*x);
for (int i=1; i < m+1; ++i)
p *= static_cast<double>(2*i-1) * sqx;
}
for (int i=m+1; i < l+1; ++i) {
pm2 = pm1;
pm1 = p;
p = (static_cast<double>(2*i-1)*x*pm1
- static_cast<double>(i+m-1)*pm2) / static_cast<double>(i-m);
}
return p;
}
/* ----------------------------------------------------------------------
assign Clebsch-Gordan coefficients
using the quasi-binomial formula VMK 8.2.1(3)
specialized for case j1=j2=j=l
------------------------------------------------------------------------- */
void ComputeOrientOrderAtom::init_clebsch_gordan()
{
double sum,dcg,sfaccg, sfac1, sfac2;
int m, aa2, bb2, cc2;
int ifac, idxcg_count;
idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m1 = 0; m1 < 2*l+1; m1++)
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++)
idxcg_count++;
}
idxcg_max = idxcg_count;
memory->create(cglist, idxcg_max, "computeorientorderatom:cglist");
idxcg_count = 0;
for (int il = 0; il < nqlist; il++) {
int l = qlist[il];
for(int m1 = 0; m1 < 2*l+1; m1++) {
aa2 = m1 - l;
for(int m2 = MAX(0,l-m1); m2 < MIN(2*l+1,3*l-m1+1); m2++) {
bb2 = m2 - l;
m = aa2 + bb2 + l;
sum = 0.0;
for (int z = MAX(0, MAX(-aa2, bb2));
z <= MIN(l, MIN(l - aa2, l + bb2)); z++) {
ifac = z % 2 ? -1 : 1;
sum += ifac /
(factorial(z) *
factorial(l - z) *
factorial(l - aa2 - z) *
factorial(l + bb2 - z) *
factorial(aa2 + z) *
factorial(-bb2 + z));
}
cc2 = m - l;
sfaccg = sqrt(factorial(l + aa2) *
factorial(l - aa2) *
factorial(l + bb2) *
factorial(l - bb2) *
factorial(l + cc2) *
factorial(l - cc2) *
(2*l + 1));
sfac1 = factorial(3*l + 1);
sfac2 = factorial(l);
dcg = sqrt(sfac2*sfac2*sfac2 / sfac1);
cglist[idxcg_count] = sum * dcg * sfaccg;
idxcg_count++;
}
}
}
}
/* ----------------------------------------------------------------------
factorial n, wrapper for precomputed table
------------------------------------------------------------------------- */
double ComputeOrientOrderAtom::factorial(int n)
{
if (n < 0 || n > nmaxfactorial) {
char str[128];
sprintf(str, "Invalid argument to factorial %d", n);
error->all(FLERR, str);
}
return nfac_table[n];
}
/* ----------------------------------------------------------------------
factorial n table, size SNA::nmaxfactorial+1
------------------------------------------------------------------------- */
const double ComputeOrientOrderAtom::nfac_table[] = {
1,
1,
2,
6,
24,
120,
720,
5040,
40320,
362880,
3628800,
39916800,
479001600,
6227020800,
87178291200,
1307674368000,
20922789888000,
355687428096000,
6.402373705728e+15,
1.21645100408832e+17,
2.43290200817664e+18,
5.10909421717094e+19,
1.12400072777761e+21,
2.5852016738885e+22,
6.20448401733239e+23,
1.5511210043331e+25,
4.03291461126606e+26,
1.08888694504184e+28,
3.04888344611714e+29,
8.8417619937397e+30,
2.65252859812191e+32,
8.22283865417792e+33,
2.63130836933694e+35,
8.68331761881189e+36,
2.95232799039604e+38,
1.03331479663861e+40,
3.71993326789901e+41,
1.37637530912263e+43,
5.23022617466601e+44,
2.03978820811974e+46,
8.15915283247898e+47,
3.34525266131638e+49,
1.40500611775288e+51,
6.04152630633738e+52,
2.65827157478845e+54,
1.1962222086548e+56,
5.50262215981209e+57,
2.58623241511168e+59,
1.24139155925361e+61,
6.08281864034268e+62,
3.04140932017134e+64,
1.55111875328738e+66,
8.06581751709439e+67,
4.27488328406003e+69,
2.30843697339241e+71,
1.26964033536583e+73,
7.10998587804863e+74,
4.05269195048772e+76,
2.35056133128288e+78,
1.3868311854569e+80,
8.32098711274139e+81,
5.07580213877225e+83,
3.14699732603879e+85,
1.98260831540444e+87,
1.26886932185884e+89,
8.24765059208247e+90,
5.44344939077443e+92,
3.64711109181887e+94,
2.48003554243683e+96,
1.71122452428141e+98,
1.19785716699699e+100,
8.50478588567862e+101,
6.12344583768861e+103,
4.47011546151268e+105,
3.30788544151939e+107,
2.48091408113954e+109,
1.88549470166605e+111,
1.45183092028286e+113,
1.13242811782063e+115,
8.94618213078297e+116,
7.15694570462638e+118,
5.79712602074737e+120,
4.75364333701284e+122,
3.94552396972066e+124,
3.31424013456535e+126,
2.81710411438055e+128,
2.42270953836727e+130,
2.10775729837953e+132,
1.85482642257398e+134,
1.65079551609085e+136,
1.48571596448176e+138,
1.3520015276784e+140,
1.24384140546413e+142,
1.15677250708164e+144,
1.08736615665674e+146,
1.03299784882391e+148,
9.91677934870949e+149,
9.61927596824821e+151,
9.42689044888324e+153,
9.33262154439441e+155,
9.33262154439441e+157,
9.42594775983835e+159,
9.61446671503512e+161,
9.90290071648618e+163,
1.02990167451456e+166,
1.08139675824029e+168,
1.14628056373471e+170,
1.22652020319614e+172,
1.32464181945183e+174,
1.44385958320249e+176,
1.58824554152274e+178,
1.76295255109024e+180,
1.97450685722107e+182,
2.23119274865981e+184,
2.54355973347219e+186,
2.92509369349301e+188,
3.3931086844519e+190,
3.96993716080872e+192,
4.68452584975429e+194,
5.5745857612076e+196,
6.68950291344912e+198,
8.09429852527344e+200,
9.8750442008336e+202,
1.21463043670253e+205,
1.50614174151114e+207,
1.88267717688893e+209,
2.37217324288005e+211,
3.01266001845766e+213,
3.8562048236258e+215,
4.97450422247729e+217,
6.46685548922047e+219,
8.47158069087882e+221,
1.118248651196e+224,
1.48727070609069e+226,
1.99294274616152e+228,
2.69047270731805e+230,
3.65904288195255e+232,
5.01288874827499e+234,
6.91778647261949e+236,
9.61572319694109e+238,
1.34620124757175e+241,
1.89814375907617e+243,
2.69536413788816e+245,
3.85437071718007e+247,
5.5502938327393e+249,
8.04792605747199e+251,
1.17499720439091e+254,
1.72724589045464e+256,
2.55632391787286e+258,
3.80892263763057e+260,
5.71338395644585e+262,
8.62720977423323e+264,
1.31133588568345e+267,
2.00634390509568e+269,
3.08976961384735e+271,
4.78914290146339e+273,
7.47106292628289e+275,
1.17295687942641e+278,
1.85327186949373e+280,
2.94670227249504e+282,
4.71472363599206e+284,
7.59070505394721e+286,
1.22969421873945e+289,
2.0044015765453e+291,
3.28721858553429e+293,
5.42391066613159e+295,
9.00369170577843e+297,
1.503616514865e+300, // nmaxfactorial = 167
};