Files
lammps/src/SPIN/fix_precession_spin.cpp
2019-11-03 11:03:39 -05:00

425 lines
12 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Julien Tranchida (SNL)
Aidan Thompson (SNL)
Please cite the related publication:
Tranchida, J., Plimpton, S. J., Thibaudeau, P., & Thompson, A. P. (2018).
Massively parallel symplectic algorithm for coupled magnetic spin dynamics
and molecular dynamics. Journal of Computational Physics.
------------------------------------------------------------------------- */
#include "fix_precession_spin.h"
#include <mpi.h>
#include <cmath>
#include <cstring>
#include "atom.h"
#include "error.h"
#include "force.h"
#include "input.h"
#include "math_const.h"
#include "modify.h"
#include "respa.h"
#include "update.h"
#include "variable.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
enum{CONSTANT,EQUAL};
/* ---------------------------------------------------------------------- */
FixPrecessionSpin::FixPrecessionSpin(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg)
{
if (narg < 7) error->all(FLERR,"Illegal precession/spin command");
// magnetic interactions coded for cartesian coordinates
hbar = force->hplanck/MY_2PI;
dynamic_group_allow = 1;
scalar_flag = 1;
global_freq = 1;
extscalar = 1;
respa_level_support = 1;
ilevel_respa = 0;
magstr = NULL;
magfieldstyle = CONSTANT;
H_field = 0.0;
nhx = nhy = nhz = 0.0;
hx = hy = hz = 0.0;
Ka = 0.0;
nax = nay = naz = 0.0;
Kax = Kay = Kaz = 0.0;
k1c = k2c = 0.0;
nc1x = nc1y = nc1z = 0.0;
nc2x = nc2y = nc2z = 0.0;
nc3x = nc3y = nc3z = 0.0;
zeeman_flag = aniso_flag = cubic_flag = 0;
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"zeeman") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
zeeman_flag = 1;
H_field = force->numeric(FLERR,arg[iarg+1]);
nhx = force->numeric(FLERR,arg[iarg+2]);
nhy = force->numeric(FLERR,arg[iarg+3]);
nhz = force->numeric(FLERR,arg[iarg+4]);
iarg += 5;
} else if (strcmp(arg[iarg],"anisotropy") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
aniso_flag = 1;
Ka = force->numeric(FLERR,arg[iarg+1]);
nax = force->numeric(FLERR,arg[iarg+2]);
nay = force->numeric(FLERR,arg[iarg+3]);
naz = force->numeric(FLERR,arg[iarg+4]);
iarg += 5;
} else if (strcmp(arg[iarg],"cubic") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal fix precession/spin command");
cubic_flag = 1;
k1c = force->numeric(FLERR,arg[iarg+1]);
k2c = force->numeric(FLERR,arg[iarg+2]);
nc1x = force->numeric(FLERR,arg[iarg+3]);
nc1y = force->numeric(FLERR,arg[iarg+4]);
nc1z = force->numeric(FLERR,arg[iarg+5]);
nc2x = force->numeric(FLERR,arg[iarg+6]);
nc2y = force->numeric(FLERR,arg[iarg+7]);
nc2z = force->numeric(FLERR,arg[iarg+8]);
nc3x = force->numeric(FLERR,arg[iarg+9]);
nc3y = force->numeric(FLERR,arg[iarg+10]);
nc3z = force->numeric(FLERR,arg[iarg+11]);
iarg += 12;
} else error->all(FLERR,"Illegal precession/spin command");
}
// normalize vectors
double inorm;
if (zeeman_flag) {
inorm = 1.0/sqrt(nhx*nhx + nhy*nhy + nhz*nhz);
nhx *= inorm;
nhy *= inorm;
nhz *= inorm;
}
if (aniso_flag) {
inorm = 1.0/sqrt(nax*nax + nay*nay + naz*naz);
nax *= inorm;
nay *= inorm;
naz *= inorm;
}
if (cubic_flag) {
inorm = 1.0/sqrt(nc1x*nc1x + nc1y*nc1y + nc1z*nc1z);
nc1x *= inorm;
nc1y *= inorm;
nc1z *= inorm;
inorm = 1.0/sqrt(nc2x*nc2x + nc2y*nc2y + nc2z*nc2z);
nc2x *= inorm;
nc2y *= inorm;
nc2z *= inorm;
inorm = 1.0/sqrt(nc3x*nc3x + nc3y*nc3y + nc3z*nc3z);
nc3x *= inorm;
nc3y *= inorm;
nc3z *= inorm;
}
degree2rad = MY_PI/180.0;
time_origin = update->ntimestep;
eflag = 0;
eprec = 0.0;
}
/* ---------------------------------------------------------------------- */
FixPrecessionSpin::~FixPrecessionSpin()
{
delete [] magstr;
}
/* ---------------------------------------------------------------------- */
int FixPrecessionSpin::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= MIN_POST_FORCE;
mask |= THERMO_ENERGY;
mask |= POST_FORCE_RESPA;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::init()
{
const double hbar = force->hplanck/MY_2PI; // eV/(rad.THz)
const double mub = 5.78901e-5; // in eV/T
const double gyro = mub/hbar; // in rad.THz/T
// convert field quantities to rad.THz
H_field *= gyro;
Kah = Ka/hbar;
k1ch = k1c/hbar;
k2ch = k2c/hbar;
if (strstr(update->integrate_style,"respa")) {
ilevel_respa = ((Respa *) update->integrate)->nlevels-1;
if (respa_level >= 0) ilevel_respa = MIN(respa_level,ilevel_respa);
}
if (magstr) {
magvar = input->variable->find(magstr);
if (magvar < 0)
error->all(FLERR,"Illegal precession/spin command");
if (!input->variable->equalstyle(magvar))
error->all(FLERR,"Illegal precession/spin command");
}
varflag = CONSTANT;
if (magfieldstyle != CONSTANT) varflag = EQUAL;
// set magnetic field components
if (varflag == CONSTANT) set_magneticprecession();
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::setup(int vflag)
{
if (strstr(update->integrate_style,"verlet"))
post_force(vflag);
else {
((Respa *) update->integrate)->copy_flevel_f(ilevel_respa);
post_force_respa(vflag,ilevel_respa,0);
((Respa *) update->integrate)->copy_f_flevel(ilevel_respa);
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::min_setup(int vflag)
{
post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::post_force(int /* vflag */)
{
// update mag field with time (potential improvement)
if (varflag != CONSTANT) {
modify->clearstep_compute();
modify->addstep_compute(update->ntimestep + 1);
set_magneticprecession(); // update mag. field if time-dep.
}
int *mask = atom->mask;
double **fm = atom->fm;
double **sp = atom->sp;
const int nlocal = atom->nlocal;
double spi[3], fmi[3], epreci;
eflag = 0;
eprec = 0.0;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
epreci = 0.0;
spi[0] = sp[i][0];
spi[1] = sp[i][1];
spi[2] = sp[i][2];
fmi[0] = fmi[1] = fmi[2] = 0.0;
if (zeeman_flag) { // compute Zeeman interaction
compute_zeeman(i,fmi);
epreci -= hbar*(spi[0]*fmi[0] + spi[1]*fmi[1] + spi[2]*fmi[2]);
}
if (aniso_flag) { // compute magnetic anisotropy
compute_anisotropy(spi,fmi);
epreci -= compute_anisotropy_energy(spi);
}
if (cubic_flag) { // compute cubic anisotropy
compute_cubic(spi,fmi);
epreci -= compute_cubic_energy(spi);
}
eprec += epreci;
fm[i][0] += fmi[0];
fm[i][1] += fmi[1];
fm[i][2] += fmi[2];
}
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_single_precession(int i, double spi[3], double fmi[3])
{
int *mask = atom->mask;
if (mask[i] & groupbit) {
if (zeeman_flag) compute_zeeman(i,fmi);
if (aniso_flag) compute_anisotropy(spi,fmi);
if (cubic_flag) compute_cubic(spi,fmi);
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_zeeman(int i, double fmi[3])
{
double **sp = atom->sp;
fmi[0] += sp[i][3]*hx;
fmi[1] += sp[i][3]*hy;
fmi[2] += sp[i][3]*hz;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_anisotropy(double spi[3], double fmi[3])
{
double scalar = nax*spi[0] + nay*spi[1] + naz*spi[2];
fmi[0] += scalar*Kax;
fmi[1] += scalar*Kay;
fmi[2] += scalar*Kaz;
}
/* ---------------------------------------------------------------------- */
double FixPrecessionSpin::compute_anisotropy_energy(double spi[3])
{
double energy = 0.0;
double scalar = nax*spi[0] + nay*spi[1] + naz*spi[2];
energy = Ka*scalar*scalar;
return energy;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
if (ilevel == ilevel_respa) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::set_magneticprecession()
{
if (zeeman_flag) {
hx = H_field*nhx;
hy = H_field*nhy;
hz = H_field*nhz;
}
if (aniso_flag) {
Kax = 2.0*Kah*nax;
Kay = 2.0*Kah*nay;
Kaz = 2.0*Kah*naz;
}
}
/* ----------------------------------------------------------------------
compute cubic aniso energy of spin i
------------------------------------------------------------------------- */
double FixPrecessionSpin::compute_cubic_energy(double spi[3])
{
double energy = 0.0;
double skx,sky,skz;
skx = spi[0]*nc1x+spi[1]*nc1y+spi[2]*nc1z;
sky = spi[0]*nc2x+spi[1]*nc2y+spi[2]*nc2z;
skz = spi[0]*nc3x+spi[1]*nc3y+spi[2]*nc3z;
energy = k1c*(skx*skx*sky*sky + sky*sky*skz*skz + skx*skx*skz*skz);
energy += k2c*skx*skx*sky*sky*skz*skz;
return energy;
}
/* ----------------------------------------------------------------------
compute cubic anisotropy interaction for spin i
------------------------------------------------------------------------- */
void FixPrecessionSpin::compute_cubic(double spi[3], double fmi[3])
{
double skx,sky,skz,skx2,sky2,skz2;
double four1,four2,four3,fourx,foury,fourz;
double six1,six2,six3,sixx,sixy,sixz;
skx = spi[0]*nc1x+spi[1]*nc1y+spi[2]*nc1z;
sky = spi[0]*nc2x+spi[1]*nc2y+spi[2]*nc2z;
skz = spi[0]*nc3x+spi[1]*nc3y+spi[2]*nc3z;
skx2 = skx*skx;
sky2 = sky*sky;
skz2 = skz*skz;
four1 = 2.0*skx*(sky2+skz2);
four2 = 2.0*sky*(skx2+skz2);
four3 = 2.0*skz*(skx2+sky2);
fourx = k1ch*(nc1x*four1 + nc2x*four2 + nc3x*four3);
foury = k1ch*(nc1y*four1 + nc2y*four2 + nc3y*four3);
fourz = k1ch*(nc1z*four1 + nc2z*four2 + nc3z*four3);
six1 = 2.0*skx*sky2*skz2;
six2 = 2.0*sky*skx2*skz2;
six3 = 2.0*skz*skx2*sky2;
sixx = k2ch*(nc1x*six1 + nc2x*six2 + nc3x*six3);
sixy = k2ch*(nc1y*six1 + nc2y*six2 + nc3y*six3);
sixz = k2ch*(nc1z*six1 + nc2z*six2 + nc3z*six3);
fmi[0] += fourx + sixx;
fmi[1] += foury + sixy;
fmi[2] += fourz + sixz;
}
/* ----------------------------------------------------------------------
potential energy in magnetic field
------------------------------------------------------------------------- */
double FixPrecessionSpin::compute_scalar()
{
// only sum across procs one time
if (eflag == 0) {
MPI_Allreduce(&eprec,&eprec_all,1,MPI_DOUBLE,MPI_SUM,world);
eflag = 1;
}
return eprec_all;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::min_post_force(int vflag)
{
post_force(vflag);
}