1106 lines
32 KiB
C++
1106 lines
32 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Mingjian Wen (University of Minnesota)
|
|
e-mail: wenxx151@umn.edu, wenxx151@gmail.com
|
|
|
|
This implements the DRIP model as described in
|
|
M. Wen, S. Carr, S. Fang, E. Kaxiras, and E. B. Tadmor,
|
|
Phys. Rev. B, 98, 235404 (2018).
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "pair_drip.h"
|
|
#include <mpi.h>
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "neigh_request.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
#define MAXLINE 1024
|
|
#define DELTA 4
|
|
#define HALF 0.5
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairDRIP::PairDRIP(LAMMPS *lmp) : Pair(lmp)
|
|
{
|
|
single_enable = 0;
|
|
restartinfo = 0;
|
|
manybody_flag = 1;
|
|
|
|
params = NULL;
|
|
nearest3neigh = NULL;
|
|
elements = NULL;
|
|
elem2param = NULL;
|
|
map = NULL;
|
|
nelements = 0;
|
|
cutmax = 0.0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairDRIP::~PairDRIP()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(cutsq);
|
|
delete [] map;
|
|
}
|
|
|
|
if (elements != NULL) {
|
|
for (int i = 0; i < nelements; i++) delete [] elements[i];
|
|
delete [] elements;
|
|
elements = NULL;
|
|
}
|
|
memory->destroy(params);
|
|
memory->destroy(elem2param);
|
|
memory->destroy(nearest3neigh);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init specific to this pair style
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::init_style()
|
|
{
|
|
if (force->newton_pair == 0)
|
|
error->all(FLERR,"Pair style drip requires newton pair on");
|
|
if (!atom->molecule_flag)
|
|
error->all(FLERR,"Pair style drip requires atom attribute molecule");
|
|
|
|
// need a full neighbor list, including neighbors of ghosts
|
|
int irequest = neighbor->request(this,instance_me);
|
|
neighbor->requests[irequest]->half = 0;
|
|
neighbor->requests[irequest]->full = 1;
|
|
neighbor->requests[irequest]->ghost = 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->ntypes;
|
|
|
|
memory->create(setflag,n+1,n+1,"pair:setflag");
|
|
memory->create(cutsq,n+1,n+1,"pair:cutsq");
|
|
map = new int[n+1];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::settings(int narg, char ** /* arg */)
|
|
{
|
|
if (narg != 0) error->all(FLERR,"Illegal pair_style command");
|
|
if (strcmp(force->pair_style,"hybrid/overlay")!=0)
|
|
error->all(FLERR,"ERROR: requires hybrid/overlay pair_style");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more type pairs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::coeff(int narg, char **arg)
|
|
{
|
|
int i,j,n;
|
|
|
|
if (!allocated) allocate();
|
|
|
|
if (narg != 3 + atom->ntypes)
|
|
error->all(FLERR,"Incorrect args for pair coefficients");
|
|
|
|
// insure I,J args are * *
|
|
if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0)
|
|
error->all(FLERR,"Incorrect args for pair coefficients");
|
|
|
|
// read args that map atom types to elements in potential file
|
|
// map[i] = which element the Ith atom type is, -1 if NULL
|
|
// nelements = # of unique elements
|
|
// elements = list of element names
|
|
|
|
if (elements) {
|
|
for (i = 0; i < nelements; i++) delete [] elements[i];
|
|
delete [] elements;
|
|
}
|
|
elements = new char*[atom->ntypes];
|
|
for (i = 0; i < atom->ntypes; i++) elements[i] = NULL;
|
|
|
|
nelements = 0;
|
|
for (i = 3; i < narg; i++) {
|
|
if (strcmp(arg[i],"NULL") == 0) {
|
|
map[i-2] = -1;
|
|
continue;
|
|
}
|
|
for (j = 0; j < nelements; j++)
|
|
if (strcmp(arg[i],elements[j]) == 0) break;
|
|
map[i-2] = j;
|
|
if (j == nelements) {
|
|
n = strlen(arg[i]) + 1;
|
|
elements[j] = new char[n];
|
|
strcpy(elements[j],arg[i]);
|
|
nelements++;
|
|
}
|
|
}
|
|
|
|
read_file(arg[2]);
|
|
|
|
|
|
// clear setflag since coeff() called once with I,J = * *
|
|
n = atom->ntypes;
|
|
for (i = 1; i <= n; i++)
|
|
for (j = i; j <= n; j++)
|
|
setflag[i][j] = 0;
|
|
|
|
int count = 0;
|
|
for (i = 1; i <= n; i++)
|
|
for (j = i; j <= n; j++)
|
|
if (map[i] >= 0 && map[j] >= 0) {
|
|
setflag[i][j] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init for one type pair i,j and corresponding j,i
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::init_one(int i, int j)
|
|
{
|
|
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
|
|
|
|
int itype = map[i];
|
|
int jtype = map[j];
|
|
int iparam_ij = elem2param[itype][jtype];
|
|
Param& p = params[iparam_ij];
|
|
|
|
// max cutoff is the main cutoff plus the normal cutoff such that
|
|
double cutmax = p.rcut + p.ncut;
|
|
|
|
return cutmax;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
read DRIP file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::read_file(char *filename)
|
|
{
|
|
int params_per_line = 15;
|
|
char **words = new char*[params_per_line+1];
|
|
memory->sfree(params);
|
|
int nparams = 0;
|
|
int maxparam = 0;
|
|
|
|
// open file on proc 0
|
|
|
|
FILE *fp;
|
|
if (comm->me == 0) {
|
|
fp = force->open_potential(filename);
|
|
if (fp == NULL) {
|
|
char str[128];
|
|
snprintf(str,128,"Cannot open DRIP potential file %s",filename);
|
|
error->one(FLERR,str);
|
|
}
|
|
}
|
|
|
|
// read each line out of file, skipping blank lines or leading '#'
|
|
// store line of params if all 3 element tags are in element list
|
|
|
|
int i,j,n,m,nwords,ielement,jelement;
|
|
char line[MAXLINE],*ptr;
|
|
int eof = 0;
|
|
|
|
while (1) {
|
|
if (comm->me == 0) {
|
|
ptr = fgets(line,MAXLINE,fp);
|
|
if (ptr == NULL) {
|
|
eof = 1;
|
|
fclose(fp);
|
|
} else n = strlen(line) + 1;
|
|
}
|
|
MPI_Bcast(&eof,1,MPI_INT,0,world);
|
|
if (eof) break;
|
|
MPI_Bcast(&n,1,MPI_INT,0,world);
|
|
MPI_Bcast(line,n,MPI_CHAR,0,world);
|
|
|
|
// strip comment, skip line if blank
|
|
|
|
if ((ptr = strchr(line,'#'))) *ptr = '\0';
|
|
nwords = atom->count_words(line);
|
|
if (nwords == 0) continue;
|
|
|
|
// concatenate additional lines until have params_per_line words
|
|
|
|
while (nwords < params_per_line) {
|
|
n = strlen(line);
|
|
if (comm->me == 0) {
|
|
ptr = fgets(&line[n],MAXLINE-n,fp);
|
|
if (ptr == NULL) {
|
|
eof = 1;
|
|
fclose(fp);
|
|
} else n = strlen(line) + 1;
|
|
}
|
|
MPI_Bcast(&eof,1,MPI_INT,0,world);
|
|
if (eof) break;
|
|
MPI_Bcast(&n,1,MPI_INT,0,world);
|
|
MPI_Bcast(line,n,MPI_CHAR,0,world);
|
|
if ((ptr = strchr(line,'#'))) *ptr = '\0';
|
|
nwords = atom->count_words(line);
|
|
}
|
|
|
|
if (nwords != params_per_line)
|
|
error->all(FLERR,"Insufficient format in DRIP potential file");
|
|
|
|
// words = ptrs to all words in line
|
|
|
|
nwords = 0;
|
|
words[nwords++] = strtok(line," \t\n\r\f");
|
|
while ((words[nwords++] = strtok(NULL," \t\n\r\f"))) continue;
|
|
|
|
// ielement,jelement = 1st args
|
|
// if these 2 args are in element list, then parse this line
|
|
// else skip to next line (continue)
|
|
|
|
for (ielement = 0; ielement < nelements; ielement++)
|
|
if (strcmp(words[0],elements[ielement]) == 0) break;
|
|
if (ielement == nelements) continue;
|
|
for (jelement = 0; jelement < nelements; jelement++)
|
|
if (strcmp(words[1],elements[jelement]) == 0) break;
|
|
if (jelement == nelements) continue;
|
|
|
|
// load up parameter settings and error check their values
|
|
|
|
if (nparams == maxparam) {
|
|
maxparam += DELTA;
|
|
params = (Param *) memory->srealloc(params,maxparam*sizeof(Param),
|
|
"pair:params");
|
|
}
|
|
|
|
params[nparams].ielement = ielement;
|
|
params[nparams].jelement = jelement;
|
|
params[nparams].C0 = atof(words[2]);
|
|
params[nparams].C2 = atof(words[3]);
|
|
params[nparams].C4 = atof(words[4]);
|
|
params[nparams].C = atof(words[5]);
|
|
params[nparams].delta = atof(words[6]);
|
|
params[nparams].lambda = atof(words[7]);
|
|
params[nparams].A = atof(words[8]);
|
|
params[nparams].z0 = atof(words[9]);
|
|
params[nparams].B = atof(words[10]);
|
|
params[nparams].eta = atof(words[11]);
|
|
params[nparams].rhocut = atof(words[12]);
|
|
params[nparams].rcut = atof(words[13]);
|
|
params[nparams].ncut = atof(words[14]);
|
|
|
|
// convenient precomputations
|
|
params[nparams].rhocutsq = params[nparams].rhocut * params[nparams].rhocut;
|
|
params[nparams].rcutsq = params[nparams].rcut * params[nparams].rcut;
|
|
params[nparams].ncutsq = params[nparams].ncut * params[nparams].ncut;
|
|
|
|
nparams++;
|
|
}
|
|
|
|
memory->destroy(elem2param);
|
|
memory->create(elem2param,nelements,nelements,"pair:elem2param");
|
|
for (i = 0; i < nelements; i++) {
|
|
for (j = 0; j < nelements; j++) {
|
|
n = -1;
|
|
for (m = 0; m < nparams; m++) {
|
|
if (i == params[m].ielement && j == params[m].jelement) {
|
|
if (n >= 0) error->all(FLERR,"Potential file has duplicate entry");
|
|
n = m;
|
|
}
|
|
}
|
|
if (n < 0) error->all(FLERR,"Potential file is missing an entry");
|
|
elem2param[i][j] = n;
|
|
}
|
|
}
|
|
delete [] words;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::compute(int eflag, int vflag)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,rsq;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
double ni[DIM];
|
|
double dni_dri[DIM][DIM], dni_drnb1[DIM][DIM];
|
|
double dni_drnb2[DIM][DIM], dni_drnb3[DIM][DIM];
|
|
|
|
ev_init(eflag,vflag);
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
find_nearest3neigh();
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
if (nearest3neigh[i][0] == -1) {
|
|
continue;
|
|
}
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = map[type[i]];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// normal and its derivatives w.r.t. atom i and its 3 nearest neighbors
|
|
calc_normal(i, ni, dni_dri,dni_drnb1, dni_drnb2, dni_drnb3);
|
|
|
|
double fi[DIM] = {0., 0., 0.};
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
if (nearest3neigh[j][0] == -1) {
|
|
continue;
|
|
}
|
|
jtype = map[type[j]];
|
|
|
|
delx = x[j][0] - xtmp;
|
|
dely = x[j][1] - ytmp;
|
|
delz = x[j][2] - ztmp;
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
int iparam_ij = elem2param[itype][jtype];
|
|
Param& p = params[iparam_ij];
|
|
double rcutsq = p.rcutsq;
|
|
|
|
// only include the interation between different layers
|
|
if (rsq < rcutsq && atom->molecule[i] != atom->molecule[j]) {
|
|
|
|
double fj[DIM] = {0., 0., 0.};
|
|
double rvec[DIM] = {delx, dely, delz};
|
|
|
|
double phi_attr = calc_attractive(p, rsq, rvec, fi, fj);
|
|
|
|
double phi_repul = calc_repulsive(i, j, p, rsq, rvec,
|
|
ni, dni_dri, dni_drnb1, dni_drnb2, dni_drnb3, fi, fj);
|
|
|
|
if (eflag) evdwl = HALF * (phi_repul + phi_attr);
|
|
else evdwl = 0.0;
|
|
if (evflag) ev_tally(i,j,nlocal,newton_pair, evdwl,0.0,0,0,0,0);
|
|
|
|
f[j][0] += fj[0];
|
|
f[j][1] += fj[1];
|
|
f[j][2] += fj[2];
|
|
|
|
// multiply 2 since v_tally has a 0.5 coeff
|
|
fj[0] *= 2; fj[1] *= 2; fj[2] *= 2;
|
|
if (vflag_atom) v_tally(j, fj, x[j]);
|
|
|
|
}
|
|
} //loop over jj
|
|
|
|
f[i][0] += fi[0];
|
|
f[i][1] += fi[1];
|
|
f[i][2] += fi[2];
|
|
|
|
// multiply 2 since v_tally has a 0.5 coeff
|
|
fi[0] *= 2; fi[1] *= 2; fi[2] *= 2;
|
|
if (vflag_atom) v_tally(i, fi, x[i]);
|
|
|
|
} // loop over ii
|
|
|
|
|
|
if (vflag_fdotr)
|
|
virial_fdotr_compute();
|
|
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Attractive part, i.e. the r^(-6) part
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::calc_attractive(Param& p, double const rsq, double const *rvec,
|
|
double *const fi, double *const fj)
|
|
{
|
|
double const z0 = p.z0;
|
|
double const A = p.A;
|
|
double const cutoff = p.rcut;
|
|
double const r = sqrt(rsq);
|
|
|
|
double roz0_sq = rsq / (z0 * z0);
|
|
double dtp;
|
|
double tp = tap(r, cutoff, dtp);
|
|
double r6 = A / (roz0_sq * roz0_sq * roz0_sq);
|
|
double dr6 = -6 * r6 / r;
|
|
double phi = -r6 * tp;
|
|
|
|
double fpair = -HALF * (r6 * dtp + dr6 * tp);
|
|
|
|
fi[0] += rvec[0] * fpair / r;
|
|
fi[1] += rvec[1] * fpair / r;
|
|
fi[2] += rvec[2] * fpair / r;
|
|
fj[0] -= rvec[0] * fpair / r;
|
|
fj[1] -= rvec[1] * fpair / r;
|
|
fj[2] -= rvec[2] * fpair / r;
|
|
|
|
return phi;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Repulsive part that depends on transverse distance and dihedral angle
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::calc_repulsive(int const i, int const j, Param& p,
|
|
double const rsq, double const *rvec, double const *ni,
|
|
V3 const *dni_dri, V3 const *dni_drnb1, V3 const *dni_drnb2,
|
|
V3 const *dni_drnb3, double *const fi, double *const fj)
|
|
{
|
|
double **f = atom->f;
|
|
double **x = atom->x;
|
|
|
|
double C0 = p.C0;
|
|
double C2 = p.C2;
|
|
double C4 = p.C4;
|
|
double C = p.C;
|
|
double delta = p.delta;
|
|
double lambda = p.lambda;
|
|
double z0 = p.z0;
|
|
double cutoff = p.rcut;
|
|
|
|
// nearest 3 neighbors of atoms i and j
|
|
int nbi1 = nearest3neigh[i][0];
|
|
int nbi2 = nearest3neigh[i][1];
|
|
int nbi3 = nearest3neigh[i][2];
|
|
int nbj1 = nearest3neigh[j][0];
|
|
int nbj2 = nearest3neigh[j][1];
|
|
int nbj3 = nearest3neigh[j][2];
|
|
|
|
double fnbi1[DIM];
|
|
double fnbi2[DIM];
|
|
double fnbi3[DIM];
|
|
double fnbj1[DIM];
|
|
double fnbj2[DIM];
|
|
double fnbj3[DIM];
|
|
V3 dgij_dri;
|
|
V3 dgij_drj;
|
|
V3 dgij_drk1;
|
|
V3 dgij_drk2;
|
|
V3 dgij_drk3;
|
|
V3 dgij_drl1;
|
|
V3 dgij_drl2;
|
|
V3 dgij_drl3;
|
|
V3 drhosqij_dri;
|
|
V3 drhosqij_drj;
|
|
V3 drhosqij_drnb1;
|
|
V3 drhosqij_drnb2;
|
|
V3 drhosqij_drnb3;
|
|
|
|
double r = sqrt(rsq);
|
|
|
|
// derivative of rhosq w.r.t. atoms i j and the nearests 3 neighs of i
|
|
get_drhosqij(rvec, ni, dni_dri, dni_drnb1, dni_drnb2, dni_drnb3, drhosqij_dri,
|
|
drhosqij_drj, drhosqij_drnb1, drhosqij_drnb2, drhosqij_drnb3);
|
|
|
|
// transverse decay function f(rho) and its derivative w.r.t. rhosq
|
|
double rhosqij;
|
|
double dtdij;
|
|
double tdij = td(C0, C2, C4, delta, rvec, r, ni, rhosqij, dtdij);
|
|
|
|
// dihedral angle function and its derivateives
|
|
double dgij_drhosq;
|
|
double gij = dihedral(i, j, p, rhosqij, dgij_drhosq, dgij_dri, dgij_drj,
|
|
dgij_drk1, dgij_drk2, dgij_drk3, dgij_drl1, dgij_drl2, dgij_drl3);
|
|
|
|
double V2 = C + tdij + gij;
|
|
|
|
// tap part
|
|
double dtp;
|
|
double tp = tap(r, cutoff, dtp);
|
|
|
|
// exponential part
|
|
double V1 = exp(-lambda * (r - z0));
|
|
double dV1 = -V1 * lambda;
|
|
|
|
// total energy
|
|
double phi = tp * V1 * V2;
|
|
|
|
for (int k = 0; k < DIM; k++) {
|
|
// forces due to derivatives of tap and V1
|
|
double tmp = HALF * (dtp * V1 + tp * dV1) * V2 * rvec[k] / r;
|
|
fi[k] += tmp;
|
|
fj[k] -= tmp;
|
|
|
|
// contributions from transverse decay part tdij and the dihedral part gij
|
|
|
|
// derivative of V2 contribute to atoms i, j
|
|
fi[k] -= HALF*tp*V1*((dtdij+dgij_drhosq)*drhosqij_dri[k]+dgij_dri[k]);
|
|
fj[k] -= HALF*tp*V1*((dtdij+dgij_drhosq)*drhosqij_drj[k]+dgij_drj[k]);
|
|
// derivative of V2 contribute to nearest 3 neighs of atom i
|
|
fnbi1[k] = -HALF*tp*V1*((dtdij+dgij_drhosq)*drhosqij_drnb1[k]+dgij_drk1[k]);
|
|
fnbi2[k] = -HALF*tp*V1*((dtdij+dgij_drhosq)*drhosqij_drnb2[k]+dgij_drk2[k]);
|
|
fnbi3[k] = -HALF*tp*V1*((dtdij+dgij_drhosq)*drhosqij_drnb3[k]+dgij_drk3[k]);
|
|
// derivative of V2 contribute to nearest 3 neighs of atom j
|
|
fnbj1[k] = -HALF * tp * V1 * dgij_drl1[k];
|
|
fnbj2[k] = -HALF * tp * V1 * dgij_drl2[k];
|
|
fnbj3[k] = -HALF * tp * V1 * dgij_drl3[k];
|
|
}
|
|
|
|
for (int k = 0; k < DIM; k++) {
|
|
f[nbi1][k] += fnbi1[k];
|
|
f[nbi2][k] += fnbi2[k];
|
|
f[nbi3][k] += fnbi3[k];
|
|
f[nbj1][k] += fnbj1[k];
|
|
f[nbj2][k] += fnbj2[k];
|
|
f[nbj3][k] += fnbj3[k];
|
|
}
|
|
|
|
if (vflag_atom) {
|
|
// multiply since v_tally has a 0.5 coeff
|
|
for (int k = 0; k < DIM; k++) {
|
|
fnbi1[k] *= 2;
|
|
fnbi2[k] *= 2;
|
|
fnbi3[k] *= 2;
|
|
fnbj1[k] *= 2;
|
|
fnbj2[k] *= 2;
|
|
fnbj3[k] *= 2;
|
|
}
|
|
v_tally(nbi1, fnbi1, x[nbi1]);
|
|
v_tally(nbi2, fnbi2, x[nbi2]);
|
|
v_tally(nbi3, fnbi3, x[nbi3]);
|
|
v_tally(nbj1, fnbj1, x[nbj1]);
|
|
v_tally(nbj2, fnbj2, x[nbj2]);
|
|
v_tally(nbj3, fnbj3, x[nbj3]);
|
|
}
|
|
|
|
return phi;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::find_nearest3neigh()
|
|
{
|
|
int i, j, ii, jj, allnum, inum, jnum, itype, jtype, size;
|
|
double xtmp, ytmp, ztmp, delx, dely, delz, rsq;
|
|
int *ilist, *jlist, *numneigh, **firstneigh;
|
|
|
|
double **x = atom->x;
|
|
int *type = atom->type;
|
|
|
|
|
|
allnum = list->inum + list->gnum;
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
size = allnum;
|
|
memory->destroy(nearest3neigh);
|
|
memory->create(nearest3neigh, size, 3, "pair:nearest3neigh");
|
|
|
|
for (ii = 0; ii < allnum; ii++) {
|
|
i = ilist[ii];
|
|
|
|
// If "NULL" used in pair_coeff, i could be larger than allnum
|
|
if (i >= size) {
|
|
size = i+1;
|
|
memory->grow(nearest3neigh, size, 3, "pair:nearest3neigh");
|
|
}
|
|
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = map[type[i]];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// init nb1 to be the 1st nearest neigh, nb3 the 3rd nearest
|
|
int nb1 = -1;
|
|
int nb2 = -1;
|
|
int nb3 = -1;
|
|
double nb1_rsq = 1.0e10 + 1;
|
|
double nb2_rsq = 2.0e10;
|
|
double nb3_rsq = 3.0e10;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
jtype = map[type[j]];
|
|
delx = x[j][0] - xtmp;
|
|
dely = x[j][1] - ytmp;
|
|
delz = x[j][2] - ztmp;
|
|
rsq = delx * delx + dely * dely + delz * delz;
|
|
|
|
int iparam_ij = elem2param[itype][jtype];
|
|
double ncutsq = params[iparam_ij].ncutsq;
|
|
|
|
if (rsq < ncutsq && atom->molecule[i] == atom->molecule[j]) {
|
|
// find the 3 nearest neigh
|
|
if (rsq < nb1_rsq) {
|
|
nb3 = nb2;
|
|
nb2 = nb1;
|
|
nb1 = j;
|
|
nb3_rsq = nb2_rsq;
|
|
nb2_rsq = nb1_rsq;
|
|
nb1_rsq = rsq;
|
|
}
|
|
else if (rsq < nb2_rsq) {
|
|
nb3 = nb2;
|
|
nb2 = j;
|
|
nb3_rsq = nb2_rsq;
|
|
nb2_rsq = rsq;
|
|
}
|
|
else if (rsq < nb3_rsq) {
|
|
nb3 = j;
|
|
nb3_rsq = rsq;
|
|
}
|
|
|
|
}
|
|
} // loop over jj
|
|
|
|
// store neighbors to be used later to compute normal
|
|
if (nb3_rsq >= 1.0e10) {
|
|
if (i<inum) {
|
|
error->one(FLERR, "No enough neighbors to construct normal. Check the "
|
|
"configuration to see whether atoms fly away.");
|
|
} else {
|
|
// This only happens for ghost atoms that are near the boundary of the
|
|
// domain (i.e. r > r_cut + n_cut). These ghost atoms will not be
|
|
// the i j atoms in the compute function, but only neighbors of j atoms.
|
|
// It is allowed not to have three neighbors for these atoms, since
|
|
// their normals are not needed.
|
|
nearest3neigh[i][0] = -1;
|
|
nearest3neigh[i][1] = -1;
|
|
nearest3neigh[i][2] = -1;
|
|
}
|
|
}
|
|
else{
|
|
nearest3neigh[i][0] = nb1;
|
|
nearest3neigh[i][1] = nb2;
|
|
nearest3neigh[i][2] = nb3;
|
|
}
|
|
} // loop over ii
|
|
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::calc_normal(int const i, double *const normal,
|
|
V3 *const dn_dri, V3 *const dn_drk1, V3 *const dn_drk2, V3 *const dn_drk3)
|
|
{
|
|
int k1 = nearest3neigh[i][0];
|
|
int k2 = nearest3neigh[i][1];
|
|
int k3 = nearest3neigh[i][2];
|
|
|
|
// normal does not depend on i, setting to zero
|
|
for (int j = 0; j < DIM; j++) {
|
|
for (int k = 0; k < DIM; k++) {
|
|
dn_dri[j][k] = 0.0;
|
|
}
|
|
}
|
|
|
|
// get normal and derives of normal w.r.t to its 3 nearest neighbors
|
|
double **x = atom->x;
|
|
deriv_cross(x[k1], x[k2], x[k3], normal, dn_drk1, dn_drk2, dn_drk3);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::get_drhosqij(double const *rij, double const *ni,
|
|
V3 const *dni_dri, V3 const *dni_drn1, V3 const *dni_drn2,
|
|
V3 const *dni_drn3, double *const drhosq_dri, double *const drhosq_drj,
|
|
double *const drhosq_drn1, double *const drhosq_drn2,
|
|
double *const drhosq_drn3)
|
|
{
|
|
int k;
|
|
double ni_dot_rij = 0;
|
|
double dni_dri_dot_rij[DIM];
|
|
double dni_drn1_dot_rij[DIM];
|
|
double dni_drn2_dot_rij[DIM];
|
|
double dni_drn3_dot_rij[DIM];
|
|
|
|
ni_dot_rij = dot(ni, rij);
|
|
mat_dot_vec(dni_dri, rij, dni_dri_dot_rij);
|
|
mat_dot_vec(dni_drn1, rij, dni_drn1_dot_rij);
|
|
mat_dot_vec(dni_drn2, rij, dni_drn2_dot_rij);
|
|
mat_dot_vec(dni_drn3, rij, dni_drn3_dot_rij);
|
|
|
|
for (k = 0; k < DIM; k++) {
|
|
drhosq_dri[k] = -2*rij[k] - 2 * ni_dot_rij * (-ni[k] + dni_dri_dot_rij[k]);
|
|
drhosq_drj[k] = 2 * rij[k] - 2 * ni_dot_rij * ni[k];
|
|
drhosq_drn1[k] = -2 * ni_dot_rij * dni_drn1_dot_rij[k];
|
|
drhosq_drn2[k] = -2 * ni_dot_rij * dni_drn2_dot_rij[k];
|
|
drhosq_drn3[k] = -2 * ni_dot_rij * dni_drn3_dot_rij[k];
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
derivartive of transverse decay function f(rho) w.r.t. rho
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::td(double C0, double C2, double C4, double delta,
|
|
double const *const rvec, double r, const double *const n,
|
|
double& rho_sq, double& dtd)
|
|
{
|
|
double n_dot_r = dot(n, rvec);
|
|
|
|
rho_sq = r * r - n_dot_r * n_dot_r;
|
|
|
|
// in case n is [0, 0, 1] and rho_sq is negative due to numerical error
|
|
if (rho_sq < 0) {
|
|
rho_sq = 0;
|
|
}
|
|
|
|
double del_sq = delta * delta;
|
|
double rod_sq = rho_sq / del_sq;
|
|
double td = exp(-rod_sq) * (C0 + rod_sq * (C2 + rod_sq * C4));
|
|
dtd = -td / del_sq + exp(-rod_sq) * (C2 + 2 * C4 * rod_sq) / del_sq;
|
|
|
|
return td;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
derivartive of dihedral angle func gij w.r.t rho, and atom positions
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::dihedral(const int i, const int j, Param& p,
|
|
double const rhosq, double& d_drhosq,
|
|
double *const d_dri, double *const d_drj,
|
|
double *const d_drk1, double *const d_drk2, double *const d_drk3,
|
|
double *const d_drl1, double *const d_drl2, double *const d_drl3)
|
|
{
|
|
double **x = atom->x;
|
|
|
|
// get parameter
|
|
double B = p.B;
|
|
double eta = p.eta;
|
|
double cut_rhosq = p.rhocutsq;
|
|
|
|
// local vars
|
|
double cos_kl[3][3]; // cos_omega_k1ijl1, cos_omega_k1ijl2 ...
|
|
double d_dcos_kl[3][3]; // deriv of dihedral w.r.t to cos_omega_kijl
|
|
double dcos_kl[3][3][4][DIM]; // 4 indicates k, i, j, l. e.g. dcoskl[0][1][0]
|
|
// means dcos_omega_k1ijl2 / drk
|
|
|
|
|
|
// if larger than cutoff of rho, return 0
|
|
if (rhosq >= cut_rhosq) {
|
|
d_drhosq = 0;
|
|
for (int dim = 0; dim < DIM; dim++) {
|
|
d_dri[dim] = 0;
|
|
d_drj[dim] = 0;
|
|
d_drk1[dim] = 0;
|
|
d_drk2[dim] = 0;
|
|
d_drk3[dim] = 0;
|
|
d_drl1[dim] = 0;
|
|
d_drl2[dim] = 0;
|
|
d_drl3[dim] = 0;
|
|
}
|
|
double dihe = 0.0;
|
|
return dihe;
|
|
}
|
|
// 3 neighs of atoms i and j
|
|
int k[3];
|
|
int l[3];
|
|
for (int m = 0; m < 3; m++) {
|
|
k[m] = nearest3neigh[i][m];
|
|
l[m] = nearest3neigh[j][m];
|
|
}
|
|
|
|
// cos_omega_kijl and the derivatives w.r.t coordinates
|
|
for (int m = 0; m < 3; m++) {
|
|
for (int n = 0; n < 3; n++) {
|
|
cos_kl[m][n] = deriv_cos_omega(x[k[m]], x[i], x[j], x[l[n]],
|
|
dcos_kl[m][n][0], dcos_kl[m][n][1],
|
|
dcos_kl[m][n][2], dcos_kl[m][n][3]);
|
|
}
|
|
}
|
|
|
|
double epart1 = exp(-eta * cos_kl[0][0] * cos_kl[0][1] * cos_kl[0][2]);
|
|
double epart2 = exp(-eta * cos_kl[1][0] * cos_kl[1][1] * cos_kl[1][2]);
|
|
double epart3 = exp(-eta * cos_kl[2][0] * cos_kl[2][1] * cos_kl[2][2]);
|
|
double D2 = epart1 + epart2 + epart3;
|
|
|
|
// cutoff function
|
|
double d_drhosq_tap;
|
|
double D0 = B * tap_rho(rhosq, cut_rhosq, d_drhosq_tap);
|
|
|
|
// dihedral energy
|
|
double dihe = D0 * D2;
|
|
|
|
// deriv of dihedral w.r.t rhosq
|
|
d_drhosq = B * d_drhosq_tap * D2;
|
|
|
|
// deriv of dihedral w.r.t cos_omega_kijl
|
|
d_dcos_kl[0][0] = -D0 * epart1 * eta * cos_kl[0][1] * cos_kl[0][2];
|
|
d_dcos_kl[0][1] = -D0 * epart1 * eta * cos_kl[0][0] * cos_kl[0][2];
|
|
d_dcos_kl[0][2] = -D0 * epart1 * eta * cos_kl[0][0] * cos_kl[0][1];
|
|
d_dcos_kl[1][0] = -D0 * epart2 * eta * cos_kl[1][1] * cos_kl[1][2];
|
|
d_dcos_kl[1][1] = -D0 * epart2 * eta * cos_kl[1][0] * cos_kl[1][2];
|
|
d_dcos_kl[1][2] = -D0 * epart2 * eta * cos_kl[1][0] * cos_kl[1][1];
|
|
d_dcos_kl[2][0] = -D0 * epart3 * eta * cos_kl[2][1] * cos_kl[2][2];
|
|
d_dcos_kl[2][1] = -D0 * epart3 * eta * cos_kl[2][0] * cos_kl[2][2];
|
|
d_dcos_kl[2][2] = -D0 * epart3 * eta * cos_kl[2][0] * cos_kl[2][1];
|
|
|
|
// initialization to be zero and later add values
|
|
for (int dim = 0; dim < DIM; dim++) {
|
|
d_drk1[dim] = 0.;
|
|
d_drk2[dim] = 0.;
|
|
d_drk3[dim] = 0.;
|
|
d_dri[dim] = 0.;
|
|
d_drj[dim] = 0.;
|
|
d_drl1[dim] = 0.;
|
|
d_drl2[dim] = 0.;
|
|
d_drl3[dim] = 0.;
|
|
}
|
|
|
|
for (int m = 0; m < 3; m++) {
|
|
for (int dim = 0; dim < 3; dim++) {
|
|
d_drk1[dim] += d_dcos_kl[0][m] * dcos_kl[0][m][0][dim];
|
|
d_drk2[dim] += d_dcos_kl[1][m] * dcos_kl[1][m][0][dim];
|
|
d_drk3[dim] += d_dcos_kl[2][m] * dcos_kl[2][m][0][dim];
|
|
d_drl1[dim] += d_dcos_kl[m][0] * dcos_kl[m][0][3][dim];
|
|
d_drl2[dim] += d_dcos_kl[m][1] * dcos_kl[m][1][3][dim];
|
|
d_drl3[dim] += d_dcos_kl[m][2] * dcos_kl[m][2][3][dim];
|
|
}
|
|
for (int n = 0; n < 3; n++) {
|
|
for (int dim = 0; dim < 3; dim++) {
|
|
d_dri[dim] += d_dcos_kl[m][n] * dcos_kl[m][n][1][dim];
|
|
d_drj[dim] += d_dcos_kl[m][n] * dcos_kl[m][n][2][dim];
|
|
}
|
|
}
|
|
}
|
|
|
|
return dihe;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute cos(omega_kijl) and the derivateives
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::deriv_cos_omega(double const *rk, double const *ri,
|
|
double const *rj, double const *rl, double *const dcos_drk,
|
|
double *const dcos_dri, double *const dcos_drj, double *const dcos_drl)
|
|
{
|
|
double ejik[DIM];
|
|
double eijl[DIM];
|
|
double tmp1[DIM];
|
|
double tmp2[DIM];
|
|
double dejik_dri[DIM][DIM];
|
|
double dejik_drj[DIM][DIM];
|
|
double dejik_drk[DIM][DIM];
|
|
double deijl_dri[DIM][DIM];
|
|
double deijl_drj[DIM][DIM];
|
|
double deijl_drl[DIM][DIM];
|
|
|
|
|
|
// ejik and derivatives
|
|
// Note the returned dejik_dri ... are actually the transpose
|
|
deriv_cross(ri, rj, rk, ejik, dejik_dri, dejik_drj, dejik_drk);
|
|
|
|
// flip sign
|
|
// deriv_cross computes rij cross rik, here we need rji cross rik
|
|
for (int m = 0; m < DIM; m++) {
|
|
ejik[m] = -ejik[m];
|
|
for (int n = 0; n < DIM; n++) {
|
|
dejik_dri[m][n] = -dejik_dri[m][n];
|
|
dejik_drj[m][n] = -dejik_drj[m][n];
|
|
dejik_drk[m][n] = -dejik_drk[m][n];
|
|
}
|
|
}
|
|
|
|
// eijl and derivatives
|
|
deriv_cross(rj, ri, rl, eijl, deijl_drj, deijl_dri, deijl_drl);
|
|
// flip sign
|
|
for (int m = 0; m < DIM; m++) {
|
|
eijl[m] = -eijl[m];
|
|
for (int n = 0; n < DIM; n++) {
|
|
deijl_drj[m][n] = -deijl_drj[m][n];
|
|
deijl_dri[m][n] = -deijl_dri[m][n];
|
|
deijl_drl[m][n] = -deijl_drl[m][n];
|
|
}
|
|
}
|
|
|
|
// dcos_drk
|
|
mat_dot_vec(dejik_drk, eijl, dcos_drk);
|
|
// dcos_dri
|
|
mat_dot_vec(dejik_dri, eijl, tmp1);
|
|
mat_dot_vec(deijl_dri, ejik, tmp2);
|
|
for (int m = 0; m < DIM; m++) {
|
|
dcos_dri[m] = tmp1[m] + tmp2[m];
|
|
}
|
|
// dcos_drj
|
|
mat_dot_vec(dejik_drj, eijl, tmp1);
|
|
mat_dot_vec(deijl_drj, ejik, tmp2);
|
|
for (int m = 0; m < DIM; m++) {
|
|
dcos_drj[m] = tmp1[m] + tmp2[m];
|
|
}
|
|
// dcos drl
|
|
mat_dot_vec(deijl_drl, ejik, dcos_drl);
|
|
|
|
// cos_oemga_kijl
|
|
double cos_omega = dot(ejik, eijl);
|
|
|
|
return cos_omega;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::tap(double r, double cutoff, double& dtap)
|
|
{
|
|
double t;
|
|
double r_min = 0;
|
|
|
|
if (r <= r_min) {
|
|
t = 1;
|
|
dtap = 0;
|
|
}
|
|
else {
|
|
double roc = (r - r_min) / (cutoff - r_min);
|
|
double roc_sq = roc * roc;
|
|
t = roc_sq*roc_sq*(-35.0 + 84.0 * roc + roc_sq * (-70.0 + 20.0 * roc)) + 1;
|
|
dtap = roc_sq * roc / (cutoff - r_min)
|
|
* (-140.0 + 420.0 * roc + roc_sq * (-420.0 + 140.0 * roc));
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairDRIP::tap_rho(double rhosq, double cut_rhosq, double& drhosq)
|
|
{
|
|
double roc_sq;
|
|
double roc;
|
|
double t;
|
|
|
|
roc_sq = rhosq / cut_rhosq;
|
|
roc = sqrt(roc_sq);
|
|
t = roc_sq*roc_sq*(-35.0 + 84.0 * roc + roc_sq * (-70.0 + 20.0 * roc)) + 1;
|
|
|
|
// Note this dtap/drho_sq not dtap/drho
|
|
drhosq = roc_sq/cut_rhosq*(-70.0 + 210.0*roc + roc_sq*(-210.0 + 70.0*roc));
|
|
|
|
return t;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Compute the normalized cross product of two vector rkl, rkm, and the
|
|
derivates w.r.t rk, rl, rm.
|
|
Note, the returned dcross_drk, dcross_drl, and dcross_drm are actually the
|
|
transpose.
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairDRIP::deriv_cross(double const *rk, double const *rl,
|
|
double const *rm, double *const cross,
|
|
V3 *const dcross_drk, V3 *const dcross_drl, V3 *const dcross_drm)
|
|
{
|
|
double x[DIM];
|
|
double y[DIM];
|
|
double p[DIM];
|
|
double q;
|
|
double q_cubic;
|
|
double d_invq_d_x0;
|
|
double d_invq_d_x1;
|
|
double d_invq_d_x2;
|
|
double d_invq_d_y0;
|
|
double d_invq_d_y1;
|
|
double d_invq_d_y2;
|
|
|
|
int i, j;
|
|
|
|
|
|
// get x = rkl and y = rkm
|
|
for (i = 0; i < DIM; i++) {
|
|
x[i] = rl[i] - rk[i];
|
|
y[i] = rm[i] - rk[i];
|
|
}
|
|
|
|
// cross product
|
|
p[0] = x[1] * y[2] - x[2] * y[1];
|
|
p[1] = x[2] * y[0] - x[0] * y[2];
|
|
p[2] = x[0] * y[1] - x[1] * y[0];
|
|
|
|
q = sqrt(p[0] * p[0] + p[1] * p[1] + p[2] * p[2]);
|
|
|
|
// normalized cross
|
|
cross[0] = p[0] / q;
|
|
cross[1] = p[1] / q;
|
|
cross[2] = p[2] / q;
|
|
|
|
// compute derivatives
|
|
// derivative of inverse q (i.e. 1/q) w.r.t x and y
|
|
q_cubic = q * q * q;
|
|
d_invq_d_x0 = (+p[1] * y[2] - p[2] * y[1]) / q_cubic;
|
|
d_invq_d_x1 = (-p[0] * y[2] + p[2] * y[0]) / q_cubic;
|
|
d_invq_d_x2 = (p[0] * y[1] - p[1] * y[0]) / q_cubic;
|
|
d_invq_d_y0 = (-p[1] * x[2] + p[2] * x[1]) / q_cubic;
|
|
d_invq_d_y1 = (p[0] * x[2] - p[2] * x[0]) / q_cubic;
|
|
d_invq_d_y2 = (-p[0] * x[1] + p[1] * x[0]) / q_cubic;
|
|
|
|
// dcross/drl transposed
|
|
dcross_drl[0][0] = p[0] * d_invq_d_x0;
|
|
dcross_drl[0][1] = -y[2] / q + p[1] * d_invq_d_x0;
|
|
dcross_drl[0][2] = y[1] / q + p[2] * d_invq_d_x0;
|
|
|
|
dcross_drl[1][0] = y[2] / q + p[0] * d_invq_d_x1;
|
|
dcross_drl[1][1] = p[1] * d_invq_d_x1;
|
|
dcross_drl[1][2] = -y[0] / q + p[2] * d_invq_d_x1;
|
|
|
|
dcross_drl[2][0] = -y[1] / q + p[0] * d_invq_d_x2;
|
|
dcross_drl[2][1] = y[0] / q + p[1] * d_invq_d_x2;
|
|
dcross_drl[2][2] = p[2] * d_invq_d_x2;
|
|
|
|
// dcross/drm transposed
|
|
dcross_drm[0][0] = p[0] * d_invq_d_y0;
|
|
dcross_drm[0][1] = x[2] / q + p[1] * d_invq_d_y0;
|
|
dcross_drm[0][2] = -x[1] / q + p[2] * d_invq_d_y0;
|
|
|
|
dcross_drm[1][0] = -x[2] / q + p[0] * d_invq_d_y1;
|
|
dcross_drm[1][1] = p[1] * d_invq_d_y1;
|
|
dcross_drm[1][2] = x[0] / q + p[2] * d_invq_d_y1;
|
|
|
|
dcross_drm[2][0] = x[1] / q + p[0] * d_invq_d_y2;
|
|
dcross_drm[2][1] = -x[0] / q + p[1] * d_invq_d_y2;
|
|
dcross_drm[2][2] = p[2] * d_invq_d_y2;
|
|
|
|
// dcross/drk transposed
|
|
for (i = 0; i < DIM; i++) {
|
|
for (j = 0; j < DIM; j++) {
|
|
dcross_drk[i][j] = -(dcross_drl[i][j] + dcross_drm[i][j]);
|
|
}
|
|
}
|
|
}
|