176 lines
5.7 KiB
C++
176 lines
5.7 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://lammps.sandia.gov/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Hendrik Heenen (hendrik.heenen@mytum.de)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "pair_coul_long_cs.h"
|
|
#include <cmath>
|
|
#include "atom.h"
|
|
#include "force.h"
|
|
#include "neigh_list.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
#define EWALD_F 1.12837917
|
|
#define EWALD_P 9.95473818e-1
|
|
#define B0 -0.1335096380159268
|
|
#define B1 -2.57839507e-1
|
|
#define B2 -1.37203639e-1
|
|
#define B3 -8.88822059e-3
|
|
#define B4 -5.80844129e-3
|
|
#define B5 1.14652755e-1
|
|
|
|
#define EPSILON 1.0e-20
|
|
#define EPS_EWALD 1.0e-6
|
|
#define EPS_EWALD_SQR 1.0e-12
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairCoulLongCS::PairCoulLongCS(LAMMPS *lmp) : PairCoulLong(lmp)
|
|
{
|
|
ewaldflag = pppmflag = 1;
|
|
single_enable = 0; // TODO: single function does not match compute
|
|
ftable = nullptr;
|
|
qdist = 0.0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairCoulLongCS::compute(int eflag, int vflag)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itable,itype,jtype;
|
|
double qtmp,xtmp,ytmp,ztmp,delx,dely,delz,ecoul,fpair;
|
|
double fraction,table;
|
|
double r,r2inv,forcecoul,factor_coul;
|
|
double grij,expm2,prefactor,t,erfc,u;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
double rsq;
|
|
|
|
ecoul = 0.0;
|
|
ev_init(eflag,vflag);
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
double *q = atom->q;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
double *special_coul = force->special_coul;
|
|
int newton_pair = force->newton_pair;
|
|
double qqrd2e = force->qqrd2e;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// loop over neighbors of my atoms
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
qtmp = q[i];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
factor_coul = special_coul[sbmask(j)];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cut_coulsq) {
|
|
rsq += EPSILON; // Add Epsilon for case: r = 0; Interaction must be removed by special bond;
|
|
r2inv = 1.0/rsq;
|
|
if (!ncoultablebits || rsq <= tabinnersq) {
|
|
r = sqrt(rsq);
|
|
prefactor = qqrd2e * scale[itype][jtype] * qtmp*q[j];
|
|
if (factor_coul < 1.0) {
|
|
// When bonded parts are being calculated a minimal distance (EPS_EWALD)
|
|
// has to be added to the prefactor and erfc in order to make the
|
|
// used approximation functions for the Ewald correction valid
|
|
grij = g_ewald * (r+EPS_EWALD);
|
|
expm2 = exp(-grij*grij);
|
|
t = 1.0 / (1.0 + EWALD_P*grij);
|
|
u = 1.0 - t;
|
|
erfc = t * (1.+u*(B0+u*(B1+u*(B2+u*(B3+u*(B4+u*B5)))))) * expm2;
|
|
prefactor /= (r+EPS_EWALD);
|
|
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2 - (1.0-factor_coul));
|
|
// Additionally r2inv needs to be accordingly modified since the later
|
|
// scaling of the overall force shall be consistent
|
|
r2inv = 1.0/(rsq + EPS_EWALD_SQR);
|
|
} else {
|
|
grij = g_ewald * r;
|
|
expm2 = exp(-grij*grij);
|
|
t = 1.0 / (1.0 + EWALD_P*grij);
|
|
u = 1.0 - t;
|
|
erfc = t * (1.+u*(B0+u*(B1+u*(B2+u*(B3+u*(B4+u*B5)))))) * expm2;
|
|
prefactor /= r;
|
|
forcecoul = prefactor * (erfc + EWALD_F*grij*expm2);
|
|
}
|
|
} else {
|
|
union_int_float_t rsq_lookup;
|
|
rsq_lookup.f = rsq;
|
|
itable = rsq_lookup.i & ncoulmask;
|
|
itable >>= ncoulshiftbits;
|
|
fraction = (rsq_lookup.f - rtable[itable]) * drtable[itable];
|
|
table = ftable[itable] + fraction*dftable[itable];
|
|
forcecoul = scale[itype][jtype] * qtmp*q[j] * table;
|
|
if (factor_coul < 1.0) {
|
|
table = ctable[itable] + fraction*dctable[itable];
|
|
prefactor = scale[itype][jtype] * qtmp*q[j] * table;
|
|
forcecoul -= (1.0-factor_coul)*prefactor;
|
|
}
|
|
}
|
|
|
|
fpair = forcecoul * r2inv;
|
|
|
|
f[i][0] += delx*fpair;
|
|
f[i][1] += dely*fpair;
|
|
f[i][2] += delz*fpair;
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] -= delx*fpair;
|
|
f[j][1] -= dely*fpair;
|
|
f[j][2] -= delz*fpair;
|
|
}
|
|
|
|
if (eflag) {
|
|
if (!ncoultablebits || rsq <= tabinnersq)
|
|
ecoul = prefactor*erfc;
|
|
else {
|
|
table = etable[itable] + fraction*detable[itable];
|
|
ecoul = scale[itype][jtype] * qtmp*q[j] * table;
|
|
}
|
|
if (factor_coul < 1.0) ecoul -= (1.0-factor_coul)*prefactor;
|
|
}
|
|
|
|
if (evflag) ev_tally(i,j,nlocal,newton_pair,
|
|
0.0,ecoul,fpair,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vflag_fdotr) virial_fdotr_compute();
|
|
}
|
|
|