Files
lammps/src/SPIN/min_spin_lbfgs.cpp
2023-06-25 06:02:17 -04:00

754 lines
20 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Aleksei Ivanov (University of Iceland)
Julien Tranchida (SNL)
Please cite the related publication:
Ivanov, A. V., Uzdin, V. M., & Jónsson, H. (2019). Fast and Robust
Algorithm for the Minimisation of the Energy of Spin Systems. arXiv
preprint arXiv:1904.02669.
------------------------------------------------------------------------- */
#include "min_spin_lbfgs.h"
#include "atom.h"
#include "citeme.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "output.h"
#include "timer.h"
#include "universe.h"
#include "update.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace MathConst;
static const char cite_minstyle_spin_lbfgs[] =
"min_style spin/lbfgs command: doi:10.48550/arXiv.1904.02669\n\n"
"@article{ivanov2019fast,\n"
"title={Fast and Robust Algorithm for the Minimisation of the Energy of\n"
" Spin Systems},\n"
"author={Ivanov, A. V and Uzdin, V. M. and J{\'o}nsson, H.},\n"
"journal={arXiv preprint arXiv:1904.02669},\n"
"year={2019}\n"
"}\n\n";
// EPS_ENERGY = minimum normalization for energy tolerance
#define EPS_ENERGY 1.0e-8
#define DELAYSTEP 5
/* ---------------------------------------------------------------------- */
MinSpinLBFGS::MinSpinLBFGS(LAMMPS *lmp) :
Min(lmp), g_old(nullptr), g_cur(nullptr), p_s(nullptr), rho(nullptr), ds(nullptr), dy(nullptr), sp_copy(nullptr)
{
if (lmp->citeme) lmp->citeme->add(cite_minstyle_spin_lbfgs);
nlocal_max = 0;
// nreplica = number of partitions
// ireplica = which world I am in universe
nreplica = universe->nworlds;
ireplica = universe->iworld;
use_line_search = 0; // no line search as default option for LBFGS
maxepsrot = MY_2PI / (100.0);
}
/* ---------------------------------------------------------------------- */
MinSpinLBFGS::~MinSpinLBFGS()
{
memory->destroy(g_old);
memory->destroy(g_cur);
memory->destroy(p_s);
memory->destroy(ds);
memory->destroy(dy);
memory->destroy(rho);
if (use_line_search)
memory->destroy(sp_copy);
}
/* ---------------------------------------------------------------------- */
void MinSpinLBFGS::init()
{
num_mem = 3;
local_iter = 0;
der_e_cur = 0.0;
der_e_pr = 0.0;
Min::init();
// warning if line_search combined to gneb
if ((nreplica >= 1) && (linestyle != SPIN_NONE) && (comm->me == 0))
error->warning(FLERR,"Line search incompatible with gneb");
// set back use_line_search to 0 if more than one replica
if (linestyle == SPIN_CUBIC && nreplica == 1) {
use_line_search = 1;
}
else{
use_line_search = 0;
}
last_negative = update->ntimestep;
// allocate tables
nlocal_max = atom->nlocal;
memory->grow(g_old,3*nlocal_max,"min/spin/lbfgs:g_old");
memory->grow(g_cur,3*nlocal_max,"min/spin/lbfgs:g_cur");
memory->grow(p_s,3*nlocal_max,"min/spin/lbfgs:p_s");
memory->grow(rho,num_mem,"min/spin/lbfgs:rho");
memory->grow(ds,num_mem,3*nlocal_max,"min/spin/lbfgs:ds");
memory->grow(dy,num_mem,3*nlocal_max,"min/spin/lbfgs:dy");
if (use_line_search)
memory->grow(sp_copy,nlocal_max,3,"min/spin/lbfgs:sp_copy");
}
/* ---------------------------------------------------------------------- */
void MinSpinLBFGS::setup_style()
{
double **v = atom->v;
int nlocal = atom->nlocal;
// check if the atom/spin style is defined
if (!atom->sp_flag)
error->all(FLERR,"min spin/lbfgs requires atom/spin style");
for (int i = 0; i < nlocal; i++)
v[i][0] = v[i][1] = v[i][2] = 0.0;
}
/* ---------------------------------------------------------------------- */
int MinSpinLBFGS::modify_param(int narg, char **arg)
{
if (strcmp(arg[0],"discrete_factor") == 0) {
if (narg < 2) error->all(FLERR,"Illegal min_modify command");
double discrete_factor;
discrete_factor = utils::numeric(FLERR,arg[1],false,lmp);
maxepsrot = MY_2PI / (10 * discrete_factor);
return 2;
}
return 0;
}
/* ----------------------------------------------------------------------
set current vector lengths and pointers
called after atoms have migrated
------------------------------------------------------------------------- */
void MinSpinLBFGS::reset_vectors()
{
// atomic dof
// size sp is 4N vector
nvec = 4 * atom->nlocal;
if (nvec) spvec = atom->sp[0];
nvec = 3 * atom->nlocal;
if (nvec) fmvec = atom->fm[0];
if (nvec) xvec = atom->x[0];
if (nvec) fvec = atom->f[0];
}
/* ----------------------------------------------------------------------
minimization via damped spin dynamics
------------------------------------------------------------------------- */
int MinSpinLBFGS::iterate(int maxiter)
{
int nlocal = atom->nlocal;
bigint ntimestep;
double fmdotfm,fmsq;
int flag, flagall;
double **sp = atom->sp;
double der_e_cur_tmp = 0.0;
if (nlocal_max < nlocal) {
nlocal_max = nlocal;
local_iter = 0;
memory->grow(g_old,3*nlocal_max,"min/spin/lbfgs:g_old");
memory->grow(g_cur,3*nlocal_max,"min/spin/lbfgs:g_cur");
memory->grow(p_s,3*nlocal_max,"min/spin/lbfgs:p_s");
memory->grow(rho,num_mem,"min/spin/lbfgs:rho");
memory->grow(ds,num_mem,3*nlocal_max,"min/spin/lbfgs:ds");
memory->grow(dy,num_mem,3*nlocal_max,"min/spin/lbfgs:dy");
if (use_line_search)
memory->grow(sp_copy,nlocal_max,3,"min/spin/lbfgs:sp_copy");
}
for (int iter = 0; iter < maxiter; iter++) {
if (timer->check_timeout(niter))
return TIMEOUT;
ntimestep = ++update->ntimestep;
niter++;
// optimize timestep across processes / replicas
// need a force calculation for timestep optimization
if (use_line_search) {
// here we need to do line search
if (local_iter == 0) {
eprevious = ecurrent;
ecurrent = energy_force(0);
calc_gradient();
}
calc_search_direction();
der_e_cur = 0.0;
for (int i = 0; i < 3 * nlocal; i++)
der_e_cur += g_cur[i] * p_s[i];
MPI_Allreduce(&der_e_cur,&der_e_cur_tmp,1,MPI_DOUBLE,MPI_SUM,world);
der_e_cur = der_e_cur_tmp;
if (update->multireplica == 1) {
MPI_Allreduce(&der_e_cur_tmp,&der_e_cur,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
for (int i = 0; i < nlocal; i++)
for (int j = 0; j < 3; j++)
sp_copy[i][j] = sp[i][j];
eprevious = ecurrent;
der_e_pr = der_e_cur;
calc_and_make_step(0.0, 1.0, 0);
}
else{
// here we don't do line search
// but use cutoff rotation angle
// if gneb calc., nreplica > 1
// then calculate gradients and advance spins
// of intermediate replicas only
eprevious = ecurrent;
ecurrent = energy_force(0);
calc_gradient();
calc_search_direction();
advance_spins();
neval++;
}
// energy tolerance criterion
// only check after DELAYSTEP elapsed since velocties reset to 0
// sync across replicas if running multi-replica minimization
if (update->etol > 0.0 && ntimestep-last_negative > DELAYSTEP) {
if (update->multireplica == 0) {
if (fabs(ecurrent-eprevious) <
update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
return ETOL;
} else {
if (fabs(ecurrent-eprevious) <
update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
flag = 0;
else flag = 1;
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld);
if (flagall == 0) return ETOL;
}
}
// magnetic torque tolerance criterion
// sync across replicas if running multi-replica minimization
fmdotfm = fmsq = 0.0;
if (update->ftol > 0.0) {
if (normstyle == MAX) fmsq = max_torque(); // max torque norm
else if (normstyle == INF) fmsq = inf_torque(); // inf torque norm
else if (normstyle == TWO) fmsq = total_torque(); // Euclidean torque 2-norm
else error->all(FLERR,"Illegal min_modify command");
fmdotfm = fmsq*fmsq;
if (update->multireplica == 0) {
if (fmdotfm < update->ftol*update->ftol) return FTOL;
} else {
if (fmdotfm < update->ftol*update->ftol) flag = 0;
else flag = 1;
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld);
if (flagall == 0) return FTOL;
}
}
// output for thermo, dump, restart files
if (output->next == ntimestep) {
timer->stamp();
output->write(ntimestep);
timer->stamp(Timer::OUTPUT);
}
}
return MAXITER;
}
/* ----------------------------------------------------------------------
calculate gradients
---------------------------------------------------------------------- */
void MinSpinLBFGS::calc_gradient()
{
int nlocal = atom->nlocal;
double **sp = atom->sp;
double **fm = atom->fm;
double hbar = force->hplanck/MY_2PI;
// loop on all spins on proc.
for (int i = 0; i < nlocal; i++) {
g_cur[3 * i + 0] = (fm[i][0]*sp[i][1] - fm[i][1]*sp[i][0]) * hbar;
g_cur[3 * i + 1] = -(fm[i][2]*sp[i][0] - fm[i][0]*sp[i][2]) * hbar;
g_cur[3 * i + 2] = (fm[i][1]*sp[i][2] - fm[i][2]*sp[i][1]) * hbar;
}
}
/* ----------------------------------------------------------------------
search direction:
Limited-memory BFGS.
See Jorge Nocedal and Stephen J. Wright 'Numerical
Optimization' Second Edition, 2006 (p. 177)
---------------------------------------------------------------------- */
void MinSpinLBFGS::calc_search_direction()
{
int nlocal = atom->nlocal;
double dyds = 0.0;
double sq = 0.0;
double yy = 0.0;
double yr = 0.0;
double beta = 0.0;
double dyds_global = 0.0;
double sq_global = 0.0;
double yy_global = 0.0;
double yr_global = 0.0;
int m_index = local_iter % num_mem; // memory index
int c_ind = 0;
double *q;
double *alpha;
double factor;
double scaling = 1.0;
// for multiple replica do not move end points
if (nreplica > 1) {
if (ireplica == 0 || ireplica == nreplica - 1) {
factor = 0.0;
}
else factor = 1.0;
}else{
factor = 1.0;
}
if (local_iter == 0) { // steepest descent direction
//if no line search then calculate maximum rotation
if (use_line_search == 0)
scaling = maximum_rotation(g_cur);
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = -g_cur[i] * factor * scaling;
g_old[i] = g_cur[i] * factor;
for (int k = 0; k < num_mem; k++) {
ds[k][i] = 0.0;
dy[k][i] = 0.0;
}
}
for (int k = 0; k < num_mem; k++)
rho[k] = 0.0;
} else {
dyds = 0.0;
for (int i = 0; i < 3 * nlocal; i++) {
ds[m_index][i] = p_s[i];
dy[m_index][i] = g_cur[i] - g_old[i];
dyds += ds[m_index][i] * dy[m_index][i];
}
MPI_Allreduce(&dyds, &dyds_global, 1, MPI_DOUBLE, MPI_SUM, world);
if (nreplica > 1) {
dyds_global *= factor;
dyds = dyds_global;
MPI_Allreduce(&dyds, &dyds_global, 1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
if (fabs(dyds_global) > 1.0e-60) rho[m_index] = 1.0 / dyds_global;
else rho[m_index] = 1.0e60;
if (rho[m_index] < 0.0) {
local_iter = 0;
return calc_search_direction();
}
q = (double *) calloc(3*nlocal, sizeof(double));
alpha = (double *) calloc(num_mem, sizeof(double));
// set the q vector
for (int i = 0; i < 3 * nlocal; i++) {
q[i] = g_cur[i];
}
// loop over last m indecies
for (int k = num_mem - 1; k > -1; k--) {
// this loop should run from the newest memory to the oldest one.
c_ind = (k + m_index + 1) % num_mem;
// dot product between dg and q
sq = 0.0;
for (int i = 0; i < 3 * nlocal; i++) {
sq += ds[c_ind][i] * q[i];
}
MPI_Allreduce(&sq,&sq_global,1,MPI_DOUBLE,MPI_SUM,world);
if (nreplica > 1) {
sq_global *= factor;
sq = sq_global;
MPI_Allreduce(&sq,&sq_global,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
// update alpha
alpha[c_ind] = rho[c_ind] * sq_global;
// update q
for (int i = 0; i < 3 * nlocal; i++) {
q[i] -= alpha[c_ind] * dy[c_ind][i];
}
}
// dot product between dg with itself
yy = 0.0;
for (int i = 0; i < 3 * nlocal; i++) {
yy += dy[m_index][i] * dy[m_index][i];
}
MPI_Allreduce(&yy,&yy_global,1,MPI_DOUBLE,MPI_SUM,world);
if (nreplica > 1) {
yy_global *= factor;
yy = yy_global;
MPI_Allreduce(&yy,&yy_global,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
// calculate now search direction
double devis = rho[m_index] * yy_global;
if (fabs(devis) > 1.0e-60) {
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = factor * q[i] / devis;
}
}else{
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = factor * q[i] * 1.0e60;
}
}
for (int k = 0; k < num_mem; k++) {
// this loop should run from the oldest memory to the newest one.
if (local_iter < num_mem) c_ind = k;
else c_ind = (k + m_index + 1) % num_mem;
// dot product between p and da
yr = 0.0;
for (int i = 0; i < 3 * nlocal; i++) {
yr += dy[c_ind][i] * p_s[i];
}
MPI_Allreduce(&yr,&yr_global,1,MPI_DOUBLE,MPI_SUM,world);
if (nreplica > 1) {
yr_global *= factor;
yr = yr_global;
MPI_Allreduce(&yr,&yr_global,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
beta = rho[c_ind] * yr_global;
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] += ds[c_ind][i] * (alpha[c_ind] - beta);
}
}
if (use_line_search == 0)
scaling = maximum_rotation(p_s);
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = - factor * p_s[i] * scaling;
g_old[i] = g_cur[i] * factor;
}
free(q);
free(alpha);
}
local_iter++;
}
/* ----------------------------------------------------------------------
rotation of spins along the search direction
---------------------------------------------------------------------- */
void MinSpinLBFGS::advance_spins()
{
int nlocal = atom->nlocal;
double **sp = atom->sp;
double rot_mat[9]; // exponential of matrix made of search direction
double s_new[3];
// loop on all spins on proc.
for (int i = 0; i < nlocal; i++) {
rodrigues_rotation(p_s + 3 * i, rot_mat);
// rotate spins
vm3(rot_mat, sp[i], s_new);
for (int j = 0; j < 3; j++) sp[i][j] = s_new[j];
}
}
/* ----------------------------------------------------------------------
calculate 3x3 matrix exponential using Rodrigues' formula
(R. Murray, Z. Li, and S. Shankar Sastry,
A Mathematical Introduction to
Robotic Manipulation (1994), p. 28 and 30).
upp_tr - vector x, y, z so that one calculate
U = exp(A) with A= [[0, x, y],
[-x, 0, z],
[-y, -z, 0]]
------------------------------------------------------------------------- */
void MinSpinLBFGS::rodrigues_rotation(const double *upp_tr, double *out)
{
double theta,A,B,D,x,y,z;
double s1,s2,s3,a1,a2,a3;
if (fabs(upp_tr[0]) < 1.0e-40 &&
fabs(upp_tr[1]) < 1.0e-40 &&
fabs(upp_tr[2]) < 1.0e-40) {
// if upp_tr is zero, return unity matrix
for (int k = 0; k < 3; k++) {
for (int m = 0; m < 3; m++) {
if (m == k) out[3 * k + m] = 1.0;
else out[3 * k + m] = 0.0;
}
}
return;
}
theta = sqrt(upp_tr[0] * upp_tr[0] +
upp_tr[1] * upp_tr[1] +
upp_tr[2] * upp_tr[2]);
A = cos(theta);
B = sin(theta);
D = 1 - A;
x = upp_tr[0]/theta;
y = upp_tr[1]/theta;
z = upp_tr[2]/theta;
// diagonal elements of U
out[0] = A + z * z * D;
out[4] = A + y * y * D;
out[8] = A + x * x * D;
// off diagonal of U
s1 = -y * z *D;
s2 = x * z * D;
s3 = -x * y * D;
a1 = x * B;
a2 = y * B;
a3 = z * B;
out[1] = s1 + a1;
out[3] = s1 - a1;
out[2] = s2 + a2;
out[6] = s2 - a2;
out[5] = s3 + a3;
out[7] = s3 - a3;
}
/* ----------------------------------------------------------------------
out = vector^T x m,
m -- 3x3 matrix , v -- 3-d vector
------------------------------------------------------------------------- */
void MinSpinLBFGS::vm3(const double *m, const double *v, double *out)
{
for (int i = 0; i < 3; i++) {
out[i] = 0.0;
for (int j = 0; j < 3; j++)
out[i] += *(m + 3 * j + i) * v[j];
}
}
void MinSpinLBFGS::make_step(double c, double *energy_and_der)
{
double p_scaled[3];
int nlocal = atom->nlocal;
double rot_mat[9]; // exponential of matrix made of search direction
double s_new[3];
double **sp = atom->sp;
double der_e_cur_tmp = 0.0;
for (int i = 0; i < nlocal; i++) {
// scale the search direction
for (int j = 0; j < 3; j++) p_scaled[j] = c * p_s[3 * i + j];
// calculate rotation matrix
rodrigues_rotation(p_scaled, rot_mat);
// rotate spins
vm3(rot_mat, sp[i], s_new);
for (int j = 0; j < 3; j++) sp[i][j] = s_new[j];
}
ecurrent = energy_force(0);
calc_gradient();
neval++;
der_e_cur = 0.0;
for (int i = 0; i < 3 * nlocal; i++) {
der_e_cur += g_cur[i] * p_s[i];
}
MPI_Allreduce(&der_e_cur,&der_e_cur_tmp, 1, MPI_DOUBLE, MPI_SUM, world);
der_e_cur = der_e_cur_tmp;
if (update->multireplica == 1) {
MPI_Allreduce(&der_e_cur_tmp,&der_e_cur,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
energy_and_der[0] = ecurrent;
energy_and_der[1] = der_e_cur;
}
/* ----------------------------------------------------------------------
Calculate step length which satisfies approximate Wolfe conditions
using the cubic interpolation
------------------------------------------------------------------------- */
int MinSpinLBFGS::calc_and_make_step(double a, double b, int index)
{
double e_and_d[2] = {0.0,0.0};
double alpha,c1,c2,c3;
double **sp = atom->sp;
int nlocal = atom->nlocal;
make_step(b,e_and_d);
ecurrent = e_and_d[0];
der_e_cur = e_and_d[1];
index++;
if (adescent(eprevious,e_and_d[0]) || index == 5) {
MPI_Bcast(&b,1,MPI_DOUBLE,0,world);
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = b * p_s[i];
}
return 1;
}
else{
double r,f0,f1,df0,df1;
r = b - a;
f0 = eprevious;
f1 = ecurrent;
df0 = der_e_pr;
df1 = der_e_cur;
c1 = -2.0*(f1-f0)/(r*r*r)+(df1+df0)/(r*r);
c2 = 3.0*(f1-f0)/(r*r)-(df1+2.0*df0)/(r);
c3 = df0;
// f(x) = c1 x^3 + c2 x^2 + c3 x^1 + c4
// has minimum at alpha below. We do not check boundaries.
alpha = (-c2 + sqrt(c2*c2 - 3.0*c1*c3))/(3.0*c1);
MPI_Bcast(&alpha,1,MPI_DOUBLE,0,world);
if (alpha < 0.0) alpha = r/2.0;
for (int i = 0; i < nlocal; i++) {
for (int j = 0; j < 3; j++) sp[i][j] = sp_copy[i][j];
}
calc_and_make_step(0.0, alpha, index);
}
return 0;
}
/* ----------------------------------------------------------------------
Approximate descent
------------------------------------------------------------------------- */
int MinSpinLBFGS::adescent(double phi_0, double phi_j) {
double eps = 1.0e-6;
if (phi_j<=phi_0+eps*fabs(phi_0))
return 1;
else
return 0;
}
double MinSpinLBFGS::maximum_rotation(double *p)
{
double norm2,norm2_global,scaling,alpha;
int nlocal = atom->nlocal;
int ntotal = 0;
norm2 = 0.0;
for (int i = 0; i < 3 * nlocal; i++) norm2 += p[i] * p[i];
MPI_Allreduce(&norm2,&norm2_global,1,MPI_DOUBLE,MPI_SUM,world);
if (nreplica > 1) {
norm2 = norm2_global;
MPI_Allreduce(&norm2,&norm2_global,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
MPI_Allreduce(&nlocal,&ntotal,1,MPI_INT,MPI_SUM,world);
if (nreplica > 1) {
nlocal = ntotal;
MPI_Allreduce(&nlocal,&ntotal,1,MPI_INT,MPI_SUM,universe->uworld);
}
scaling = (maxepsrot * sqrt((double) ntotal / norm2_global));
if (scaling < 1.0) alpha = scaling;
else alpha = 1.0;
return alpha;
}