250 lines
6.0 KiB
Plaintext
250 lines
6.0 KiB
Plaintext
LAMMPS data file via write_data, version 24 Oct 2015-ICMS, timestep = 100
|
|
|
|
18 atoms
|
|
2 atom types
|
|
19 bonds
|
|
2 bond types
|
|
30 angles
|
|
2 angle types
|
|
44 dihedrals
|
|
3 dihedral types
|
|
10 impropers
|
|
2 improper types
|
|
|
|
6.4669444000000006e-02 2.0064669444000000e+01 xlo xhi
|
|
-2.0061369444000000e+01 -6.1369444000000002e-02 ylo yhi
|
|
-2.0006684444000001e+01 -6.6844440000000003e-03 zlo zhi
|
|
|
|
Masses
|
|
|
|
1 1.00797
|
|
2 12.0112
|
|
|
|
Pair Coeffs # lj/class2/coul/cut
|
|
|
|
1 0.02 2.995
|
|
2 0.064 4.01
|
|
|
|
Bond Coeffs # class2
|
|
|
|
1 1.0982 372.825 -803.453 894.317
|
|
2 1.417 470.836 -627.618 1327.63
|
|
|
|
Angle Coeffs # class2
|
|
|
|
1 117.94 35.1558 -12.4682 0
|
|
2 118.9 61.0226 -34.9931 0
|
|
|
|
BondBond Coeffs
|
|
|
|
1 1.0795 1.0982 1.417
|
|
2 68.2856 1.417 1.417
|
|
|
|
BondAngle Coeffs
|
|
|
|
1 24.2183 20.0033 1.0982 1.417
|
|
2 28.8708 28.8708 1.417 1.417
|
|
|
|
Dihedral Coeffs # class2
|
|
|
|
1 0 0 3.9661 0 0 0
|
|
2 0 0 1.8769 0 0 0
|
|
3 8.3667 0 1.1932 0 0 0
|
|
|
|
AngleAngleTorsion Coeffs
|
|
|
|
1 -4.8141 117.94 118.9
|
|
2 0.3598 117.94 117.94
|
|
3 0 118.9 118.9
|
|
|
|
EndBondTorsion Coeffs
|
|
|
|
1 0 -0.4669 0 0 -6.8958 0 1.0982 1.417
|
|
2 0 -0.689 0 0 -0.689 0 1.0982 1.0982
|
|
3 -0.1185 6.3204 0 -0.1185 6.3204 0 1.417 1.417
|
|
|
|
MiddleBondTorsion Coeffs
|
|
|
|
1 0 -1.1521 0 1.417
|
|
2 0 4.8228 0 1.417
|
|
3 27.5989 -2.312 0 1.417
|
|
|
|
BondBond13 Coeffs
|
|
|
|
1 -6.2741 1.0982 1.417
|
|
2 -1.7077 1.0982 1.0982
|
|
3 53 1.417 1.417
|
|
|
|
AngleTorsion Coeffs
|
|
|
|
1 0 2.7147 0 0 2.5014 0 117.94 118.9
|
|
2 0 2.4501 0 0 2.4501 0 117.94 117.94
|
|
3 1.9767 1.0239 0 1.9767 1.0239 0 118.9 118.9
|
|
|
|
Improper Coeffs # class2
|
|
|
|
1 4.8912 0
|
|
2 7.1794 0
|
|
|
|
AngleAngle Coeffs
|
|
|
|
1 0 0 0 117.94 118.9 117.94
|
|
2 0 0 0 118.9 118.9 118.9
|
|
|
|
Atoms # full
|
|
|
|
18 1 1 1.3100000000000001e-01 9.9818272866175075e+00 -1.2855663774939638e+01 -1.0009450787367086e+01 0 0 0
|
|
12 1 2 -1.2700000000000000e-01 1.2529554285474092e+01 -1.0600284104727114e+01 -1.0015641735668074e+01 0 0 0
|
|
13 1 2 -1.2700000000000000e-01 1.1865863545075193e+01 -1.1827817347686510e+01 -1.0016143204504594e+01 0 0 0
|
|
14 1 2 -1.1799999999999999e-01 1.0487865315056842e+01 -1.1880432841090798e+01 -1.0009012204129904e+01 0 0 0
|
|
16 1 1 1.3100000000000001e-01 1.3628255119027907e+01 -1.0576671759443403e+01 -1.0021108442715054e+01 0 0 0
|
|
17 1 1 1.3300000000000001e-01 1.2447159073366381e+01 -1.2760449226419150e+01 -1.0022295739921258e+01 0 0 0
|
|
11 1 2 -1.1899999999999999e-01 1.1818885067538572e+01 -9.4183522267797972e+00 -1.0008343871912928e+01 0 0 0
|
|
15 1 1 1.3200000000000001e-01 1.2358875775045824e+01 -8.4612075353333474e+00 -1.0009150930845982e+01 0 0 0
|
|
6 1 2 -3.5999999999999997e-02 9.7240210515250567e+00 -1.0691686309928613e+01 -1.0003158357277508e+01 0 0 0
|
|
7 1 2 -1.1700000000000001e-01 8.3110279035699222e+00 -1.0704259833711575e+01 -1.0000636527566915e+01 0 0 0
|
|
10 1 1 1.3200000000000001e-01 7.7723715155681719e+00 -1.1662033535268330e+01 -1.0001512310543106e+01 0 0 0
|
|
1 1 1 1.3200000000000001e-01 6.5011854619891860e+00 -9.5478500109020548e+00 -9.9989203564295472e+00 0 0 0
|
|
2 1 2 -1.2800000000000000e-01 7.5998512893161774e+00 -9.5228176924598156e+00 -1.0000021098941344e+01 0 0 0
|
|
3 1 2 -1.2700000000000000e-01 8.2631706048357252e+00 -8.2949498179280834e+00 -1.0000156396747084e+01 0 0 0
|
|
4 1 2 -1.1700000000000001e-01 9.6412569424707293e+00 -8.2416500367266643e+00 -1.0000802350457274e+01 0 0 0
|
|
8 1 1 1.3100000000000001e-01 7.6811503230314129e+00 -7.3627183952227666e+00 -1.0000267698314738e+01 0 0 0
|
|
5 1 2 -3.6999999999999998e-02 1.0405736096337888e+01 -9.4303209683888376e+00 -1.0002576434550440e+01 0 0 0
|
|
9 1 1 1.3300000000000001e-01 1.0145993344153458e+01 -7.2654845830434924e+00 -1.0001121552107151e+01 0 0 0
|
|
|
|
Velocities
|
|
|
|
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
|
|
|
|
Bonds
|
|
|
|
1 1 18 14
|
|
2 2 12 13
|
|
3 2 13 14
|
|
4 1 16 12
|
|
5 1 17 13
|
|
6 2 11 12
|
|
7 1 15 11
|
|
8 2 6 7
|
|
9 2 6 14
|
|
10 1 10 7
|
|
11 1 1 2
|
|
12 2 2 3
|
|
13 2 2 7
|
|
14 2 3 4
|
|
15 2 4 5
|
|
16 1 8 3
|
|
17 2 5 6
|
|
18 2 5 11
|
|
19 1 9 4
|
|
|
|
Angles
|
|
|
|
1 2 11 12 13
|
|
2 1 16 12 11
|
|
3 1 16 12 13
|
|
4 2 12 13 14
|
|
5 1 17 13 12
|
|
6 1 17 13 14
|
|
7 2 6 14 13
|
|
8 1 18 14 6
|
|
9 1 18 14 13
|
|
10 2 5 11 12
|
|
11 1 15 11 5
|
|
12 1 15 11 12
|
|
13 2 5 6 7
|
|
14 2 5 6 14
|
|
15 2 7 6 14
|
|
16 2 2 7 6
|
|
17 1 10 7 2
|
|
18 1 10 7 6
|
|
19 1 1 2 3
|
|
20 1 1 2 7
|
|
21 2 3 2 7
|
|
22 2 2 3 4
|
|
23 1 8 3 2
|
|
24 1 8 3 4
|
|
25 2 3 4 5
|
|
26 1 9 4 3
|
|
27 1 9 4 5
|
|
28 2 4 5 6
|
|
29 2 4 5 11
|
|
30 2 6 5 11
|
|
|
|
Dihedrals
|
|
|
|
1 1 16 12 11 5
|
|
2 3 11 12 13 14
|
|
3 1 16 12 13 14
|
|
4 2 16 12 13 17
|
|
5 1 17 13 12 11
|
|
6 3 12 13 14 6
|
|
7 1 17 13 14 6
|
|
8 2 17 13 14 18
|
|
9 1 18 14 6 5
|
|
10 1 18 14 6 7
|
|
11 1 18 14 13 12
|
|
12 1 15 11 5 4
|
|
13 1 15 11 5 6
|
|
14 3 5 11 12 13
|
|
15 1 15 11 12 13
|
|
16 2 15 11 12 16
|
|
17 3 5 6 7 2
|
|
18 3 14 6 7 2
|
|
19 3 5 6 14 13
|
|
20 3 7 6 14 13
|
|
21 1 10 7 2 3
|
|
22 1 10 7 6 5
|
|
23 1 10 7 6 14
|
|
24 1 1 2 3 4
|
|
25 2 1 2 3 8
|
|
26 3 7 2 3 4
|
|
27 1 1 2 7 6
|
|
28 2 1 2 7 10
|
|
29 3 3 2 7 6
|
|
30 1 8 3 2 7
|
|
31 3 2 3 4 5
|
|
32 1 8 3 4 5
|
|
33 2 8 3 4 9
|
|
34 1 9 4 3 2
|
|
35 3 3 4 5 6
|
|
36 3 3 4 5 11
|
|
37 1 9 4 5 6
|
|
38 1 9 4 5 11
|
|
39 3 4 5 6 7
|
|
40 3 4 5 6 14
|
|
41 3 11 5 6 7
|
|
42 3 11 5 6 14
|
|
43 3 4 5 11 12
|
|
44 3 6 5 11 12
|
|
|
|
Impropers
|
|
|
|
1 1 16 12 13 11
|
|
2 1 17 13 14 12
|
|
3 1 18 14 13 6
|
|
4 1 15 11 12 5
|
|
5 2 5 6 7 14
|
|
6 1 10 7 6 2
|
|
7 1 1 2 3 7
|
|
8 1 8 3 4 2
|
|
9 1 9 4 5 3
|
|
10 2 4 5 6 11
|