754 lines
23 KiB
C++
754 lines
23 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Paul Crozier (SNL)
|
|
Carolyn Phillips (University of Michigan)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "fix_ttm.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "random_mars.h"
|
|
#include "respa.h"
|
|
#include "potential_file_reader.h"
|
|
#include "update.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace FixConst;
|
|
|
|
// OFFSET avoids outside-of-box atoms being rounded to grid pts incorrectly
|
|
// SHIFT = 0.0 assigns atoms to lower-left grid pt
|
|
// SHIFT = 0.5 assigns atoms to nearest grid pt
|
|
// use SHIFT = 0.0 for now since it allows fix ave/chunk
|
|
// to spatially average consistent with the TTM grid
|
|
|
|
static constexpr int OFFSET = 16384;
|
|
static constexpr double SHIFT = 0.0;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixTTM::FixTTM(LAMMPS *lmp, int narg, char **arg) :
|
|
Fix(lmp, narg, arg),
|
|
random(nullptr),
|
|
gfactor1(nullptr), gfactor2(nullptr), ratio(nullptr), flangevin(nullptr),
|
|
T_electron(nullptr), T_electron_old(nullptr),
|
|
net_energy_transfer(nullptr), net_energy_transfer_all(nullptr)
|
|
{
|
|
if (narg < 13) error->all(FLERR,"Illegal fix ttm command");
|
|
|
|
vector_flag = 1;
|
|
size_vector = 2;
|
|
global_freq = 1;
|
|
extvector = 1;
|
|
nevery = 1;
|
|
restart_peratom = 1;
|
|
restart_global = 1;
|
|
|
|
seed = utils::inumeric(FLERR,arg[3],false,lmp);
|
|
electronic_specific_heat = utils::numeric(FLERR,arg[4],false,lmp);
|
|
electronic_density = utils::numeric(FLERR,arg[5],false,lmp);
|
|
electronic_thermal_conductivity = utils::numeric(FLERR,arg[6],false,lmp);
|
|
gamma_p = utils::numeric(FLERR,arg[7],false,lmp);
|
|
gamma_s = utils::numeric(FLERR,arg[8],false,lmp);
|
|
v_0 = utils::numeric(FLERR,arg[9],false,lmp);
|
|
nxgrid = utils::inumeric(FLERR,arg[10],false,lmp);
|
|
nygrid = utils::inumeric(FLERR,arg[11],false,lmp);
|
|
nzgrid = utils::inumeric(FLERR,arg[12],false,lmp);
|
|
|
|
tinit = 0.0;
|
|
infile = outfile = nullptr;
|
|
|
|
int iarg = 13;
|
|
while (iarg < narg) {
|
|
if (strcmp(arg[iarg],"set") == 0) {
|
|
if (iarg+2 > narg) error->all(FLERR,"Illegal fix ttm command");
|
|
tinit = utils::numeric(FLERR,arg[iarg+1],false,lmp);
|
|
if (tinit <= 0.0)
|
|
error->all(FLERR,"Fix ttm initial temperature must be > 0.0");
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg],"infile") == 0) {
|
|
if (iarg+2 > narg) error->all(FLERR,"Illegal fix ttm command");
|
|
infile = utils::strdup(arg[iarg+1]);
|
|
iarg += 2;
|
|
} else if (strcmp(arg[iarg],"outfile") == 0) {
|
|
if (iarg+3 > narg) error->all(FLERR,"Illegal fix ttm command");
|
|
outevery = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
|
|
outfile = utils::strdup(arg[iarg+2]);
|
|
iarg += 3;
|
|
} else error->all(FLERR,"Illegal fix ttm command");
|
|
}
|
|
|
|
// error check
|
|
|
|
if (seed <= 0)
|
|
error->all(FLERR,"Invalid random number seed in fix ttm command");
|
|
if (electronic_specific_heat <= 0.0)
|
|
error->all(FLERR,"Fix ttm electronic_specific_heat must be > 0.0");
|
|
if (electronic_density <= 0.0)
|
|
error->all(FLERR,"Fix ttm electronic_density must be > 0.0");
|
|
if (electronic_thermal_conductivity < 0.0)
|
|
error->all(FLERR,"Fix ttm electronic_thermal_conductivity must be >= 0.0");
|
|
if (gamma_p <= 0.0) error->all(FLERR,"Fix ttm gamma_p must be > 0.0");
|
|
if (gamma_s < 0.0) error->all(FLERR,"Fix ttm gamma_s must be >= 0.0");
|
|
if (v_0 < 0.0) error->all(FLERR,"Fix ttm v_0 must be >= 0.0");
|
|
if (nxgrid <= 0 || nygrid <= 0 || nzgrid <= 0)
|
|
error->all(FLERR,"Fix ttm grid sizes must be > 0");
|
|
|
|
v_0_sq = v_0*v_0;
|
|
|
|
// grid OFFSET to perform
|
|
// SHIFT to map atom to nearest or lower-left grid point
|
|
|
|
shift = OFFSET + SHIFT;
|
|
|
|
// initialize Marsaglia RNG with processor-unique seed
|
|
|
|
random = new RanMars(lmp,seed + comm->me);
|
|
|
|
// allocate per-type arrays for force prefactors
|
|
|
|
gfactor1 = new double[atom->ntypes+1];
|
|
gfactor2 = new double[atom->ntypes+1];
|
|
|
|
// check for allowed maximum number of total grid points
|
|
|
|
bigint totalgrid = (bigint) nxgrid * nygrid * nzgrid;
|
|
if (totalgrid > MAXSMALLINT)
|
|
error->all(FLERR,"Too many grid points in fix ttm");
|
|
ngridtotal = totalgrid;
|
|
|
|
// allocate per-atom flangevin and zero it
|
|
|
|
flangevin = nullptr;
|
|
FixTTM::grow_arrays(atom->nmax);
|
|
|
|
for (int i = 0; i < atom->nmax; i++) {
|
|
flangevin[i][0] = 0.0;
|
|
flangevin[i][1] = 0.0;
|
|
flangevin[i][2] = 0.0;
|
|
}
|
|
|
|
// set 2 callbacks
|
|
|
|
atom->add_callback(Atom::GROW);
|
|
atom->add_callback(Atom::RESTART);
|
|
|
|
// determines which class deallocate_grid() is called from
|
|
|
|
deallocate_flag = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixTTM::~FixTTM()
|
|
{
|
|
delete [] infile;
|
|
|
|
delete random;
|
|
|
|
delete [] gfactor1;
|
|
delete [] gfactor2;
|
|
|
|
memory->destroy(flangevin);
|
|
|
|
if (!deallocate_flag) FixTTM::deallocate_grid();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::post_constructor()
|
|
{
|
|
// allocate global grid on each proc
|
|
// needs to be done in post_contructor() beccause is virtual method
|
|
|
|
allocate_grid();
|
|
|
|
// initialize electron temperatures on grid
|
|
|
|
int ix,iy,iz;
|
|
for (iz = 0; iz < nzgrid; iz++)
|
|
for (iy = 0; iy < nygrid; iy++)
|
|
for (ix = 0; ix < nxgrid; ix++)
|
|
T_electron[iz][iy][ix] = tinit;
|
|
|
|
// zero net_energy_transfer_all
|
|
// in case compute_vector accesses it on timestep 0
|
|
|
|
outflag = 0;
|
|
memset(&net_energy_transfer_all[0][0][0],0,ngridtotal*sizeof(double));
|
|
|
|
// set initial electron temperatures from user input file
|
|
|
|
if (infile) read_electron_temperatures(infile);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int FixTTM::setmask()
|
|
{
|
|
int mask = 0;
|
|
mask |= POST_FORCE;
|
|
mask |= POST_FORCE_RESPA;
|
|
mask |= END_OF_STEP;
|
|
return mask;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::init()
|
|
{
|
|
if (domain->dimension == 2)
|
|
error->all(FLERR,"Cannot use fix ttm with 2d simulation");
|
|
if (domain->nonperiodic != 0)
|
|
error->all(FLERR,"Cannot use non-periodic boundares with fix ttm");
|
|
if (domain->triclinic)
|
|
error->all(FLERR,"Cannot use fix ttm with triclinic box");
|
|
|
|
// to allow this, would have to reset grid bounds dynamically
|
|
// for RCB balancing would have to reassign grid pts to procs
|
|
// and create a new GridComm, and pass old GC data to new GC
|
|
|
|
if (domain->box_change)
|
|
error->all(FLERR,"Cannot use fix ttm with changing box shape, size, or sub-domains");
|
|
|
|
// set force prefactors
|
|
|
|
for (int i = 1; i <= atom->ntypes; i++) {
|
|
gfactor1[i] = - gamma_p / force->ftm2v;
|
|
gfactor2[i] =
|
|
sqrt(24.0*force->boltz*gamma_p/update->dt/force->mvv2e) / force->ftm2v;
|
|
}
|
|
|
|
if (utils::strmatch(update->integrate_style,"^respa"))
|
|
nlevels_respa = ((Respa *) update->integrate)->nlevels;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::setup(int vflag)
|
|
{
|
|
if (utils::strmatch(update->integrate_style,"^verlet")) {
|
|
post_force_setup(vflag);
|
|
} else {
|
|
((Respa *) update->integrate)->copy_flevel_f(nlevels_respa-1);
|
|
post_force_respa_setup(vflag,nlevels_respa-1,0);
|
|
((Respa *) update->integrate)->copy_f_flevel(nlevels_respa-1);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::post_force_setup(int /*vflag*/)
|
|
{
|
|
double **f = atom->f;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
// apply langevin forces that have been stored from previous run
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
f[i][0] += flangevin[i][0];
|
|
f[i][1] += flangevin[i][1];
|
|
f[i][2] += flangevin[i][2];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::post_force(int /*vflag*/)
|
|
{
|
|
int ix,iy,iz;
|
|
double gamma1,gamma2;
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
int *type = atom->type;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double *boxlo = domain->boxlo;
|
|
double dxinv = nxgrid/domain->xprd;
|
|
double dyinv = nygrid/domain->yprd;
|
|
double dzinv = nzgrid/domain->zprd;
|
|
|
|
// apply damping and thermostat to all atoms in fix group
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
ix = static_cast<int> ((x[i][0]-boxlo[0])*dxinv + shift) - OFFSET;
|
|
iy = static_cast<int> ((x[i][1]-boxlo[1])*dyinv + shift) - OFFSET;
|
|
iz = static_cast<int> ((x[i][2]-boxlo[2])*dzinv + shift) - OFFSET;
|
|
if (ix < 0) ix += nxgrid;
|
|
if (iy < 0) iy += nygrid;
|
|
if (iz < 0) iz += nzgrid;
|
|
if (ix >= nxgrid) ix -= nxgrid;
|
|
if (iy >= nygrid) iy -= nygrid;
|
|
if (iz >= nzgrid) iz -= nzgrid;
|
|
|
|
if (T_electron[iz][iy][ix] < 0)
|
|
error->one(FLERR,"Electronic temperature dropped below zero");
|
|
|
|
double tsqrt = sqrt(T_electron[iz][iy][ix]);
|
|
|
|
gamma1 = gfactor1[type[i]];
|
|
double vsq = v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2];
|
|
if (vsq > v_0_sq) gamma1 *= (gamma_p + gamma_s)/gamma_p;
|
|
gamma2 = gfactor2[type[i]] * tsqrt;
|
|
|
|
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
|
|
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
|
|
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
|
|
|
|
f[i][0] += flangevin[i][0];
|
|
f[i][1] += flangevin[i][1];
|
|
f[i][2] += flangevin[i][2];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::post_force_respa_setup(int vflag, int ilevel, int /*iloop*/)
|
|
{
|
|
if (ilevel == nlevels_respa-1) post_force_setup(vflag);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::post_force_respa(int vflag, int ilevel, int /*iloop*/)
|
|
{
|
|
if (ilevel == nlevels_respa-1) post_force(vflag);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::end_of_step()
|
|
{
|
|
int ix,iy,iz;
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double *boxlo = domain->boxlo;
|
|
double dxinv = nxgrid/domain->xprd;
|
|
double dyinv = nygrid/domain->yprd;
|
|
double dzinv = nzgrid/domain->zprd;
|
|
|
|
for (iz = 0; iz < nzgrid; iz++)
|
|
for (iy = 0; iy < nygrid; iy++)
|
|
for (ix = 0; ix < nxgrid; ix++)
|
|
net_energy_transfer[iz][iy][ix] = 0.0;
|
|
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
ix = static_cast<int> ((x[i][0]-boxlo[0])*dxinv + shift) - OFFSET;
|
|
iy = static_cast<int> ((x[i][1]-boxlo[1])*dyinv + shift) - OFFSET;
|
|
iz = static_cast<int> ((x[i][2]-boxlo[2])*dzinv + shift) - OFFSET;
|
|
if (ix < 0) ix += nxgrid;
|
|
if (iy < 0) iy += nygrid;
|
|
if (iz < 0) iz += nzgrid;
|
|
if (ix >= nxgrid) ix -= nxgrid;
|
|
if (iy >= nygrid) iy -= nygrid;
|
|
if (iz >= nzgrid) iz -= nzgrid;
|
|
|
|
net_energy_transfer[iz][iy][ix] +=
|
|
(flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] +
|
|
flangevin[i][2]*v[i][2]);
|
|
}
|
|
|
|
outflag = 0;
|
|
MPI_Allreduce(&net_energy_transfer[0][0][0],&net_energy_transfer_all[0][0][0],
|
|
ngridtotal,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
double dx = domain->xprd/nxgrid;
|
|
double dy = domain->yprd/nygrid;
|
|
double dz = domain->zprd/nzgrid;
|
|
double del_vol = dx*dy*dz;
|
|
|
|
// num_inner_timesteps = # of inner steps (thermal solves)
|
|
// required this MD step to maintain a stable explicit solve
|
|
|
|
int num_inner_timesteps = 1;
|
|
double inner_dt = update->dt;
|
|
|
|
double stability_criterion = 1.0 -
|
|
2.0*inner_dt/(electronic_specific_heat*electronic_density) *
|
|
(electronic_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
|
|
|
|
if (stability_criterion < 0.0) {
|
|
inner_dt = 0.5*(electronic_specific_heat*electronic_density) /
|
|
(electronic_thermal_conductivity*(1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz));
|
|
num_inner_timesteps = static_cast<int>(update->dt/inner_dt) + 1;
|
|
inner_dt = update->dt/double(num_inner_timesteps);
|
|
if (num_inner_timesteps > 1000000)
|
|
error->warning(FLERR,"Too many inner timesteps in fix ttm");
|
|
}
|
|
|
|
// finite difference iterations to update T_electron
|
|
|
|
for (int istep = 0; istep < num_inner_timesteps; istep++) {
|
|
|
|
for (iz = 0; iz < nzgrid; iz++)
|
|
for (iy = 0; iy < nygrid; iy++)
|
|
for (ix = 0; ix < nxgrid; ix++)
|
|
T_electron_old[iz][iy][ix] = T_electron[iz][iy][ix];
|
|
|
|
// compute new electron T profile
|
|
|
|
for (iz = 0; iz < nzgrid; iz++)
|
|
for (iy = 0; iy < nygrid; iy++)
|
|
for (ix = 0; ix < nxgrid; ix++) {
|
|
int xright = ix + 1;
|
|
int yright = iy + 1;
|
|
int zright = iz + 1;
|
|
if (xright == nxgrid) xright = 0;
|
|
if (yright == nygrid) yright = 0;
|
|
if (zright == nzgrid) zright = 0;
|
|
int xleft = ix - 1;
|
|
int yleft = iy - 1;
|
|
int zleft = iz - 1;
|
|
if (xleft == -1) xleft = nxgrid - 1;
|
|
if (yleft == -1) yleft = nygrid - 1;
|
|
if (zleft == -1) zleft = nzgrid - 1;
|
|
|
|
T_electron[iz][iy][ix] =
|
|
T_electron_old[iz][iy][ix] +
|
|
inner_dt/(electronic_specific_heat*electronic_density) *
|
|
(electronic_thermal_conductivity *
|
|
|
|
((T_electron_old[iz][iy][xright] + T_electron_old[iz][iy][xleft] -
|
|
2.0*T_electron_old[iz][iy][ix])/dx/dx +
|
|
(T_electron_old[iz][yright][ix] + T_electron_old[iz][yleft][ix] -
|
|
2.0*T_electron_old[iz][iy][ix])/dy/dy +
|
|
(T_electron_old[zright][iy][ix] + T_electron_old[zleft][iy][ix] -
|
|
2.0*T_electron_old[iz][iy][ix])/dz/dz) -
|
|
|
|
(net_energy_transfer_all[iz][iy][ix])/del_vol);
|
|
}
|
|
}
|
|
|
|
// output of grid electron temperatures to file
|
|
|
|
if (outfile && (update->ntimestep % outevery == 0))
|
|
write_electron_temperatures(fmt::format("{}.{}",outfile,update->ntimestep));
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
read in initial electron temperatures from a user-specified file
|
|
only read by proc 0, grid values are Bcast to other procs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::read_electron_temperatures(const std::string &filename)
|
|
{
|
|
if (comm->me == 0) {
|
|
|
|
int ***T_initial_set;
|
|
memory->create(T_initial_set,nxgrid,nygrid,nzgrid,"ttm:T_initial_set");
|
|
memset(&T_initial_set[0][0][0],0,ngridtotal*sizeof(int));
|
|
|
|
// read initial electron temperature values from file
|
|
bigint nread = 0;
|
|
|
|
try {
|
|
PotentialFileReader reader(lmp, filename, "electron temperature grid");
|
|
|
|
while (nread < ngridtotal) {
|
|
// reader will skip over comment-only lines
|
|
auto values = reader.next_values(4);
|
|
++nread;
|
|
|
|
int ix = values.next_int();
|
|
int iy = values.next_int();
|
|
int iz = values.next_int();
|
|
double T_tmp = values.next_double();
|
|
|
|
// check correctness of input data
|
|
|
|
if ((ix < 0) || (ix >= nxgrid) || (iy < 0) || (iy >= nygrid) || (iz < 0) || (iz >= nzgrid))
|
|
throw TokenizerException("Fix ttm invalid grid index in fix ttm grid file","");
|
|
|
|
if (T_tmp < 0.0)
|
|
throw TokenizerException("Fix ttm electron temperatures must be > 0.0","");
|
|
|
|
T_electron[iz][iy][ix] = T_tmp;
|
|
T_initial_set[iz][iy][ix] = 1;
|
|
}
|
|
} catch (std::exception &e) {
|
|
error->one(FLERR, e.what());
|
|
}
|
|
|
|
// check completeness of input data
|
|
|
|
for (int iz = 0; iz < nzgrid; iz++)
|
|
for (int iy = 0; iy < nygrid; iy++)
|
|
for (int ix = 0; ix < nxgrid; ix++)
|
|
if (T_initial_set[iz][iy][ix] == 0)
|
|
error->all(FLERR,"Fix ttm infile did not set all temperatures");
|
|
|
|
memory->destroy(T_initial_set);
|
|
}
|
|
|
|
MPI_Bcast(&T_electron[0][0][0],ngridtotal,MPI_DOUBLE,0,world);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
write out current electron temperatures to user-specified file
|
|
only written by proc 0
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::write_electron_temperatures(const std::string &filename)
|
|
{
|
|
if (comm->me) return;
|
|
|
|
FILE *fp = fopen(filename.c_str(),"w");
|
|
if (!fp) error->one(FLERR,"Fix ttm could not open output file {}: {}",
|
|
filename,utils::getsyserror());
|
|
fmt::print(fp,"# DATE: {} UNITS: {} COMMENT: Electron temperature "
|
|
"{}x{}x{} grid at step {}. Created by fix {}\n", utils::current_date(),
|
|
update->unit_style, nxgrid, nygrid, nzgrid, update->ntimestep, style);
|
|
|
|
int ix,iy,iz;
|
|
|
|
for (iz = 0; iz < nzgrid; iz++)
|
|
for (iy = 0; iy < nygrid; iy++)
|
|
for (ix = 0; ix < nxgrid; ix++)
|
|
fprintf(fp,"%d %d %d %20.16g\n",ix,iy,iz,T_electron[iz][iy][ix]);
|
|
|
|
fclose(fp);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::reset_dt()
|
|
{
|
|
for (int i = 1; i <= atom->ntypes; i++)
|
|
gfactor2[i] =
|
|
sqrt(24.0*force->boltz*gamma_p/update->dt/force->mvv2e) / force->ftm2v;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixTTM::grow_arrays(int ngrow)
|
|
{
|
|
memory->grow(flangevin,ngrow,3,"ttm:flangevin");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
pack entire state of Fix into one write
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::write_restart(FILE *fp)
|
|
{
|
|
double *rlist;
|
|
memory->create(rlist,nxgrid*nygrid*nzgrid+4,"ttm:rlist");
|
|
|
|
int n = 0;
|
|
rlist[n++] = nxgrid;
|
|
rlist[n++] = nygrid;
|
|
rlist[n++] = nzgrid;
|
|
rlist[n++] = seed;
|
|
|
|
// store global grid values
|
|
|
|
for (int iz = 0; iz < nzgrid; iz++)
|
|
for (int iy = 0; iy < nygrid; iy++)
|
|
for (int ix = 0; ix < nxgrid; ix++)
|
|
rlist[n++] = T_electron[iz][iy][ix];
|
|
|
|
if (comm->me == 0) {
|
|
int size = n * sizeof(double);
|
|
fwrite(&size,sizeof(int),1,fp);
|
|
fwrite(rlist,sizeof(double),n,fp);
|
|
}
|
|
|
|
memory->destroy(rlist);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
use state info from restart file to restart the Fix
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::restart(char *buf)
|
|
{
|
|
int n = 0;
|
|
double *rlist = (double *) buf;
|
|
|
|
// check that restart grid size is same as current grid size
|
|
|
|
int nxgrid_old = static_cast<int> (rlist[n++]);
|
|
int nygrid_old = static_cast<int> (rlist[n++]);
|
|
int nzgrid_old = static_cast<int> (rlist[n++]);
|
|
|
|
if (nxgrid_old != nxgrid || nygrid_old != nygrid || nzgrid_old != nzgrid)
|
|
error->all(FLERR,"Must restart fix ttm with same grid size");
|
|
|
|
// change RN seed from initial seed, to avoid same Langevin factors
|
|
// just increment by 1, since for RanMars that is a new RN stream
|
|
|
|
seed = static_cast<int> (rlist[n++]) + 1;
|
|
delete random;
|
|
random = new RanMars(lmp,seed+comm->me);
|
|
|
|
// restore global grid values
|
|
|
|
for (int iz = 0; iz < nzgrid; iz++)
|
|
for (int iy = 0; iy < nygrid; iy++)
|
|
for (int ix = 0; ix < nxgrid; ix++)
|
|
T_electron[iz][iy][ix] = rlist[n++];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
pack values in local atom-based arrays for restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixTTM::pack_restart(int i, double *buf)
|
|
{
|
|
// pack buf[0] this way because other fixes unpack it
|
|
|
|
buf[0] = 4;
|
|
buf[1] = flangevin[i][0];
|
|
buf[2] = flangevin[i][1];
|
|
buf[3] = flangevin[i][2];
|
|
return 4;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
unpack values from atom->extra array to restart the fix
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::unpack_restart(int nlocal, int nth)
|
|
{
|
|
double **extra = atom->extra;
|
|
|
|
// skip to Nth set of extra values
|
|
// unpack the Nth first values this way because other fixes pack them
|
|
|
|
int m = 0;
|
|
for (int i = 0; i < nth; i++) m += static_cast<int> (extra[nlocal][m]);
|
|
m++;
|
|
|
|
flangevin[nlocal][0] = extra[nlocal][m++];
|
|
flangevin[nlocal][1] = extra[nlocal][m++];
|
|
flangevin[nlocal][2] = extra[nlocal][m++];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
size of atom nlocal's restart data
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixTTM::size_restart(int /*nlocal*/)
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
maxsize of any atom's restart data
|
|
------------------------------------------------------------------------- */
|
|
|
|
int FixTTM::maxsize_restart()
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
return the energy of the electronic subsystem or the net_energy transfer
|
|
between the subsystems
|
|
------------------------------------------------------------------------- */
|
|
|
|
double FixTTM::compute_vector(int n)
|
|
{
|
|
if (outflag == 0) {
|
|
e_energy = 0.0;
|
|
transfer_energy = 0.0;
|
|
|
|
int ix,iy,iz;
|
|
|
|
double dx = domain->xprd/nxgrid;
|
|
double dy = domain->yprd/nygrid;
|
|
double dz = domain->zprd/nzgrid;
|
|
double del_vol = dx*dy*dz;
|
|
|
|
for (iz = 0; iz < nzgrid; iz++)
|
|
for (iy = 0; iy < nygrid; iy++)
|
|
for (ix = 0; ix < nxgrid; ix++) {
|
|
e_energy +=
|
|
T_electron[iz][iy][ix]*electronic_specific_heat*
|
|
electronic_density*del_vol;
|
|
transfer_energy +=
|
|
net_energy_transfer_all[iz][iy][ix]*update->dt;
|
|
//printf("TRANSFER %d %d %d %g\n",ix,iy,iz,transfer_energy);
|
|
}
|
|
|
|
//printf("TRANSFER %g\n",transfer_energy);
|
|
|
|
outflag = 1;
|
|
}
|
|
|
|
if (n == 0) return e_energy;
|
|
if (n == 1) return transfer_energy;
|
|
return 0.0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage for flangevin and 3d grids
|
|
------------------------------------------------------------------------- */
|
|
|
|
double FixTTM::memory_usage()
|
|
{
|
|
double bytes = 0.0;
|
|
bytes += (double) atom->nmax * 3 * sizeof(double);
|
|
bytes += (double) 4*ngridtotal * sizeof(int);
|
|
return bytes;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate 3d grid quantities
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::allocate_grid()
|
|
{
|
|
memory->create(T_electron_old,nzgrid,nygrid,nxgrid,"ttm:T_electron_old");
|
|
memory->create(T_electron,nzgrid,nygrid,nxgrid,"ttm:T_electron");
|
|
memory->create(net_energy_transfer,nzgrid,nygrid,nxgrid,
|
|
"ttm:net_energy_transfer");
|
|
memory->create(net_energy_transfer_all,nzgrid,nygrid,nxgrid,
|
|
"ttm:net_energy_transfer_all");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
deallocate 3d grid quantities
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixTTM::deallocate_grid()
|
|
{
|
|
memory->destroy(T_electron_old);
|
|
memory->destroy(T_electron);
|
|
memory->destroy(net_energy_transfer);
|
|
memory->destroy(net_energy_transfer_all);
|
|
}
|