372 lines
13 KiB
C++
372 lines
13 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
#include "meam.h"
|
|
|
|
#include "math_special.h"
|
|
#include "memory.h"
|
|
|
|
#include <cmath>
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
void
|
|
MEAM::meam_dens_setup(int atom_nmax, int nall, int n_neigh)
|
|
{
|
|
int i, j;
|
|
|
|
// grow local arrays if necessary
|
|
|
|
if (atom_nmax > nmax) {
|
|
memory->destroy(rho);
|
|
memory->destroy(rho0);
|
|
memory->destroy(rho1);
|
|
memory->destroy(rho2);
|
|
memory->destroy(rho3);
|
|
memory->destroy(frhop);
|
|
memory->destroy(gamma);
|
|
memory->destroy(dgamma1);
|
|
memory->destroy(dgamma2);
|
|
memory->destroy(dgamma3);
|
|
memory->destroy(arho2b);
|
|
memory->destroy(arho1);
|
|
memory->destroy(arho2);
|
|
memory->destroy(arho3);
|
|
memory->destroy(arho3b);
|
|
memory->destroy(t_ave);
|
|
memory->destroy(tsq_ave);
|
|
|
|
nmax = atom_nmax;
|
|
|
|
memory->create(rho, nmax, "pair:rho");
|
|
memory->create(rho0, nmax, "pair:rho0");
|
|
memory->create(rho1, nmax, "pair:rho1");
|
|
memory->create(rho2, nmax, "pair:rho2");
|
|
memory->create(rho3, nmax, "pair:rho3");
|
|
memory->create(frhop, nmax, "pair:frhop");
|
|
memory->create(gamma, nmax, "pair:gamma");
|
|
memory->create(dgamma1, nmax, "pair:dgamma1");
|
|
memory->create(dgamma2, nmax, "pair:dgamma2");
|
|
memory->create(dgamma3, nmax, "pair:dgamma3");
|
|
memory->create(arho2b, nmax, "pair:arho2b");
|
|
memory->create(arho1, nmax, 3, "pair:arho1");
|
|
memory->create(arho2, nmax, 6, "pair:arho2");
|
|
memory->create(arho3, nmax, 10, "pair:arho3");
|
|
memory->create(arho3b, nmax, 3, "pair:arho3b");
|
|
memory->create(t_ave, nmax, 3, "pair:t_ave");
|
|
memory->create(tsq_ave, nmax, 3, "pair:tsq_ave");
|
|
}
|
|
|
|
if (n_neigh > maxneigh) {
|
|
memory->destroy(scrfcn);
|
|
memory->destroy(dscrfcn);
|
|
memory->destroy(fcpair);
|
|
maxneigh = n_neigh;
|
|
memory->create(scrfcn, maxneigh, "pair:scrfcn");
|
|
memory->create(dscrfcn, maxneigh, "pair:dscrfcn");
|
|
memory->create(fcpair, maxneigh, "pair:fcpair");
|
|
}
|
|
|
|
// zero out local arrays
|
|
|
|
for (i = 0; i < nall; i++) {
|
|
rho0[i] = 0.0;
|
|
arho2b[i] = 0.0;
|
|
arho1[i][0] = arho1[i][1] = arho1[i][2] = 0.0;
|
|
for (j = 0; j < 6; j++)
|
|
arho2[i][j] = 0.0;
|
|
for (j = 0; j < 10; j++)
|
|
arho3[i][j] = 0.0;
|
|
arho3b[i][0] = arho3b[i][1] = arho3b[i][2] = 0.0;
|
|
t_ave[i][0] = t_ave[i][1] = t_ave[i][2] = 0.0;
|
|
tsq_ave[i][0] = tsq_ave[i][1] = tsq_ave[i][2] = 0.0;
|
|
}
|
|
}
|
|
|
|
void
|
|
MEAM::meam_dens_init(int i, int ntype, int* type, int* fmap, double** x,
|
|
int numneigh, int* firstneigh,
|
|
int numneigh_full, int* firstneigh_full, int fnoffset)
|
|
{
|
|
// Compute screening function and derivatives
|
|
getscreen(i, &scrfcn[fnoffset], &dscrfcn[fnoffset], &fcpair[fnoffset], x, numneigh, firstneigh,
|
|
numneigh_full, firstneigh_full, ntype, type, fmap);
|
|
|
|
// Calculate intermediate density terms to be communicated
|
|
calc_rho1(i, ntype, type, fmap, x, numneigh, firstneigh, &scrfcn[fnoffset], &fcpair[fnoffset]);
|
|
}
|
|
|
|
// ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
|
|
|
void
|
|
MEAM::getscreen(int i, double* scrfcn, double* dscrfcn, double* fcpair, double** x, int numneigh,
|
|
int* firstneigh, int numneigh_full, int* firstneigh_full, int /*ntype*/, int* type, int* fmap)
|
|
{
|
|
int jn, j, kn, k;
|
|
int elti, eltj, eltk;
|
|
double xitmp, yitmp, zitmp, delxij, delyij, delzij, rij2, rij;
|
|
double xjtmp, yjtmp, zjtmp, delxik, delyik, delzik, rik2 /*,rik*/;
|
|
double xktmp, yktmp, zktmp, delxjk, delyjk, delzjk, rjk2 /*,rjk*/;
|
|
double xik, xjk, sij, fcij, sfcij, dfcij, sikj, dfikj, cikj;
|
|
double Cmin, Cmax, delc, /*ebound,*/ a, coef1, coef2;
|
|
double dCikj;
|
|
double rnorm, fc, dfc, drinv;
|
|
|
|
drinv = 1.0 / this->delr_meam;
|
|
elti = fmap[type[i]];
|
|
if (elti < 0) return;
|
|
|
|
xitmp = x[i][0];
|
|
yitmp = x[i][1];
|
|
zitmp = x[i][2];
|
|
|
|
for (jn = 0; jn < numneigh; jn++) {
|
|
j = firstneigh[jn];
|
|
|
|
eltj = fmap[type[j]];
|
|
if (eltj < 0) continue;
|
|
|
|
// First compute screening function itself, sij
|
|
xjtmp = x[j][0];
|
|
yjtmp = x[j][1];
|
|
zjtmp = x[j][2];
|
|
delxij = xjtmp - xitmp;
|
|
delyij = yjtmp - yitmp;
|
|
delzij = zjtmp - zitmp;
|
|
rij2 = delxij * delxij + delyij * delyij + delzij * delzij;
|
|
|
|
if (rij2 > this->cutforcesq) {
|
|
dscrfcn[jn] = 0.0;
|
|
scrfcn[jn] = 0.0;
|
|
fcpair[jn] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
const double rbound = this->ebound_meam[elti][eltj] * rij2;
|
|
rij = sqrt(rij2);
|
|
rnorm = (this->cutforce - rij) * drinv;
|
|
sij = 1.0;
|
|
|
|
// if rjk2 > ebound*rijsq, atom k is definitely outside the ellipse
|
|
for (kn = 0; kn < numneigh_full; kn++) {
|
|
k = firstneigh_full[kn];
|
|
if (k == j) continue;
|
|
eltk = fmap[type[k]];
|
|
if (eltk < 0) continue;
|
|
|
|
xktmp = x[k][0];
|
|
yktmp = x[k][1];
|
|
zktmp = x[k][2];
|
|
|
|
delxjk = xktmp - xjtmp;
|
|
delyjk = yktmp - yjtmp;
|
|
delzjk = zktmp - zjtmp;
|
|
rjk2 = delxjk * delxjk + delyjk * delyjk + delzjk * delzjk;
|
|
if (rjk2 > rbound) continue;
|
|
|
|
delxik = xktmp - xitmp;
|
|
delyik = yktmp - yitmp;
|
|
delzik = zktmp - zitmp;
|
|
rik2 = delxik * delxik + delyik * delyik + delzik * delzik;
|
|
if (rik2 > rbound) continue;
|
|
|
|
xik = rik2 / rij2;
|
|
xjk = rjk2 / rij2;
|
|
a = 1 - (xik - xjk) * (xik - xjk);
|
|
// if a < 0, then ellipse equation doesn't describe this case and
|
|
// atom k can't possibly screen i-j
|
|
if (a <= 0.0) continue;
|
|
|
|
cikj = (2.0 * (xik + xjk) + a - 2.0) / a;
|
|
Cmax = this->Cmax_meam[elti][eltj][eltk];
|
|
Cmin = this->Cmin_meam[elti][eltj][eltk];
|
|
if (cikj >= Cmax) continue;
|
|
// note that cikj may be slightly negative (within numerical
|
|
// tolerance) if atoms are colinear, so don't reject that case here
|
|
// (other negative cikj cases were handled by the test on "a" above)
|
|
else if (cikj <= Cmin) {
|
|
sij = 0.0;
|
|
break;
|
|
} else {
|
|
delc = Cmax - Cmin;
|
|
cikj = (cikj - Cmin) / delc;
|
|
sikj = fcut(cikj);
|
|
}
|
|
sij *= sikj;
|
|
}
|
|
|
|
fc = dfcut(rnorm, dfc);
|
|
fcij = fc;
|
|
dfcij = dfc * drinv;
|
|
|
|
// Now compute derivatives
|
|
dscrfcn[jn] = 0.0;
|
|
sfcij = sij * fcij;
|
|
if (!iszero(sfcij) && !isone(sfcij)) {
|
|
for (kn = 0; kn < numneigh_full; kn++) {
|
|
k = firstneigh_full[kn];
|
|
if (k == j) continue;
|
|
eltk = fmap[type[k]];
|
|
if (eltk < 0) continue;
|
|
|
|
delxjk = x[k][0] - xjtmp;
|
|
delyjk = x[k][1] - yjtmp;
|
|
delzjk = x[k][2] - zjtmp;
|
|
rjk2 = delxjk * delxjk + delyjk * delyjk + delzjk * delzjk;
|
|
if (rjk2 > rbound) continue;
|
|
|
|
delxik = x[k][0] - xitmp;
|
|
delyik = x[k][1] - yitmp;
|
|
delzik = x[k][2] - zitmp;
|
|
rik2 = delxik * delxik + delyik * delyik + delzik * delzik;
|
|
if (rik2 > rbound) continue;
|
|
|
|
xik = rik2 / rij2;
|
|
xjk = rjk2 / rij2;
|
|
a = 1 - (xik - xjk) * (xik - xjk);
|
|
// if a < 0, then ellipse equation doesn't describe this case and
|
|
// atom k can't possibly screen i-j
|
|
if (a <= 0.0) continue;
|
|
|
|
cikj = (2.0 * (xik + xjk) + a - 2.0) / a;
|
|
Cmax = this->Cmax_meam[elti][eltj][eltk];
|
|
Cmin = this->Cmin_meam[elti][eltj][eltk];
|
|
if (cikj >= Cmax) {
|
|
continue;
|
|
// Note that cikj may be slightly negative (within numerical
|
|
// tolerance) if atoms are colinear, so don't reject that case
|
|
// here
|
|
// (other negative cikj cases were handled by the test on "a"
|
|
// above)
|
|
// Note that we never have 0<cikj<Cmin here, else sij=0
|
|
// (rejected above)
|
|
} else {
|
|
delc = Cmax - Cmin;
|
|
cikj = (cikj - Cmin) / delc;
|
|
sikj = dfcut(cikj, dfikj);
|
|
coef1 = dfikj / (delc * sikj);
|
|
dCikj = dCfunc(rij2, rik2, rjk2);
|
|
dscrfcn[jn] = dscrfcn[jn] + coef1 * dCikj;
|
|
}
|
|
}
|
|
coef1 = sfcij;
|
|
coef2 = sij * dfcij / rij;
|
|
dscrfcn[jn] = dscrfcn[jn] * coef1 - coef2;
|
|
}
|
|
|
|
scrfcn[jn] = sij;
|
|
fcpair[jn] = fcij;
|
|
}
|
|
}
|
|
|
|
// ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
|
|
|
|
void
|
|
MEAM::calc_rho1(int i, int /*ntype*/, int* type, int* fmap, double** x, int numneigh, int* firstneigh,
|
|
double* scrfcn, double* fcpair)
|
|
{
|
|
int jn, j, m, n, p, elti, eltj;
|
|
int nv2, nv3;
|
|
double xtmp, ytmp, ztmp, delij[3], rij2, rij, sij;
|
|
double ai, aj, rhoa0j, rhoa1j, rhoa2j, rhoa3j, A1j, A2j, A3j;
|
|
// double G,Gbar,gam,shp[3+1];
|
|
double ro0i, ro0j;
|
|
double rhoa0i, rhoa1i, rhoa2i, rhoa3i, A1i, A2i, A3i;
|
|
|
|
elti = fmap[type[i]];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
for (jn = 0; jn < numneigh; jn++) {
|
|
if (!iszero(scrfcn[jn])) {
|
|
j = firstneigh[jn];
|
|
sij = scrfcn[jn] * fcpair[jn];
|
|
delij[0] = x[j][0] - xtmp;
|
|
delij[1] = x[j][1] - ytmp;
|
|
delij[2] = x[j][2] - ztmp;
|
|
rij2 = delij[0] * delij[0] + delij[1] * delij[1] + delij[2] * delij[2];
|
|
if (rij2 < this->cutforcesq) {
|
|
eltj = fmap[type[j]];
|
|
rij = sqrt(rij2);
|
|
ai = rij / this->re_meam[elti][elti] - 1.0;
|
|
aj = rij / this->re_meam[eltj][eltj] - 1.0;
|
|
ro0i = this->rho0_meam[elti];
|
|
ro0j = this->rho0_meam[eltj];
|
|
rhoa0j = ro0j * MathSpecial::fm_exp(-this->beta0_meam[eltj] * aj) * sij;
|
|
rhoa1j = ro0j * MathSpecial::fm_exp(-this->beta1_meam[eltj] * aj) * sij;
|
|
rhoa2j = ro0j * MathSpecial::fm_exp(-this->beta2_meam[eltj] * aj) * sij;
|
|
rhoa3j = ro0j * MathSpecial::fm_exp(-this->beta3_meam[eltj] * aj) * sij;
|
|
rhoa0i = ro0i * MathSpecial::fm_exp(-this->beta0_meam[elti] * ai) * sij;
|
|
rhoa1i = ro0i * MathSpecial::fm_exp(-this->beta1_meam[elti] * ai) * sij;
|
|
rhoa2i = ro0i * MathSpecial::fm_exp(-this->beta2_meam[elti] * ai) * sij;
|
|
rhoa3i = ro0i * MathSpecial::fm_exp(-this->beta3_meam[elti] * ai) * sij;
|
|
if (this->ialloy == 1) {
|
|
rhoa1j = rhoa1j * this->t1_meam[eltj];
|
|
rhoa2j = rhoa2j * this->t2_meam[eltj];
|
|
rhoa3j = rhoa3j * this->t3_meam[eltj];
|
|
rhoa1i = rhoa1i * this->t1_meam[elti];
|
|
rhoa2i = rhoa2i * this->t2_meam[elti];
|
|
rhoa3i = rhoa3i * this->t3_meam[elti];
|
|
}
|
|
rho0[i] = rho0[i] + rhoa0j;
|
|
rho0[j] = rho0[j] + rhoa0i;
|
|
// For ialloy = 2, use single-element value (not average)
|
|
if (this->ialloy != 2) {
|
|
t_ave[i][0] = t_ave[i][0] + this->t1_meam[eltj] * rhoa0j;
|
|
t_ave[i][1] = t_ave[i][1] + this->t2_meam[eltj] * rhoa0j;
|
|
t_ave[i][2] = t_ave[i][2] + this->t3_meam[eltj] * rhoa0j;
|
|
t_ave[j][0] = t_ave[j][0] + this->t1_meam[elti] * rhoa0i;
|
|
t_ave[j][1] = t_ave[j][1] + this->t2_meam[elti] * rhoa0i;
|
|
t_ave[j][2] = t_ave[j][2] + this->t3_meam[elti] * rhoa0i;
|
|
}
|
|
if (this->ialloy == 1) {
|
|
tsq_ave[i][0] = tsq_ave[i][0] + this->t1_meam[eltj] * this->t1_meam[eltj] * rhoa0j;
|
|
tsq_ave[i][1] = tsq_ave[i][1] + this->t2_meam[eltj] * this->t2_meam[eltj] * rhoa0j;
|
|
tsq_ave[i][2] = tsq_ave[i][2] + this->t3_meam[eltj] * this->t3_meam[eltj] * rhoa0j;
|
|
tsq_ave[j][0] = tsq_ave[j][0] + this->t1_meam[elti] * this->t1_meam[elti] * rhoa0i;
|
|
tsq_ave[j][1] = tsq_ave[j][1] + this->t2_meam[elti] * this->t2_meam[elti] * rhoa0i;
|
|
tsq_ave[j][2] = tsq_ave[j][2] + this->t3_meam[elti] * this->t3_meam[elti] * rhoa0i;
|
|
}
|
|
arho2b[i] = arho2b[i] + rhoa2j;
|
|
arho2b[j] = arho2b[j] + rhoa2i;
|
|
|
|
A1j = rhoa1j / rij;
|
|
A2j = rhoa2j / rij2;
|
|
A3j = rhoa3j / (rij2 * rij);
|
|
A1i = rhoa1i / rij;
|
|
A2i = rhoa2i / rij2;
|
|
A3i = rhoa3i / (rij2 * rij);
|
|
nv2 = 0;
|
|
nv3 = 0;
|
|
for (m = 0; m < 3; m++) {
|
|
arho1[i][m] = arho1[i][m] + A1j * delij[m];
|
|
arho1[j][m] = arho1[j][m] - A1i * delij[m];
|
|
arho3b[i][m] = arho3b[i][m] + rhoa3j * delij[m] / rij;
|
|
arho3b[j][m] = arho3b[j][m] - rhoa3i * delij[m] / rij;
|
|
for (n = m; n < 3; n++) {
|
|
arho2[i][nv2] = arho2[i][nv2] + A2j * delij[m] * delij[n];
|
|
arho2[j][nv2] = arho2[j][nv2] + A2i * delij[m] * delij[n];
|
|
nv2 = nv2 + 1;
|
|
for (p = n; p < 3; p++) {
|
|
arho3[i][nv3] = arho3[i][nv3] + A3j * delij[m] * delij[n] * delij[p];
|
|
arho3[j][nv3] = arho3[j][nv3] - A3i * delij[m] * delij[n] * delij[p];
|
|
nv3 = nv3 + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|