437 lines
13 KiB
C++
437 lines
13 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "angle_lepton.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "memory.h"
|
|
#include "neighbor.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <exception>
|
|
|
|
#include "Lepton.h"
|
|
#include "lepton_utils.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using MathConst::DEG2RAD;
|
|
using MathConst::RAD2DEG;
|
|
|
|
static constexpr double SMALL = 0.001;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleLepton::AngleLepton(LAMMPS *_lmp) :
|
|
Angle(_lmp), theta0(nullptr), type2expression(nullptr), offset(nullptr)
|
|
{
|
|
writedata = 1;
|
|
reinitflag = 0;
|
|
auto_offset = 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleLepton::~AngleLepton()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(theta0);
|
|
memory->destroy(type2expression);
|
|
memory->destroy(offset);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::compute(int eflag, int vflag)
|
|
{
|
|
ev_init(eflag, vflag);
|
|
ev_init(eflag, vflag);
|
|
if (evflag) {
|
|
if (eflag) {
|
|
if (force->newton_bond)
|
|
eval<1, 1, 1>();
|
|
else
|
|
eval<1, 1, 0>();
|
|
} else {
|
|
if (force->newton_bond)
|
|
eval<1, 0, 1>();
|
|
else
|
|
eval<1, 0, 0>();
|
|
}
|
|
} else {
|
|
if (force->newton_bond)
|
|
eval<0, 0, 1>();
|
|
else
|
|
eval<0, 0, 0>();
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template <int EVFLAG, int EFLAG, int NEWTON_BOND> void AngleLepton::eval()
|
|
{
|
|
std::vector<Lepton::CompiledExpression> angleforce;
|
|
std::vector<Lepton::CompiledExpression> anglepot;
|
|
std::vector<bool> has_ref;
|
|
try {
|
|
for (const auto &expr : expressions) {
|
|
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp));
|
|
angleforce.emplace_back(parsed.differentiate("theta").createCompiledExpression());
|
|
has_ref.push_back(true);
|
|
try {
|
|
angleforce.back().getVariableReference("theta");
|
|
} catch (Lepton::Exception &) {
|
|
has_ref.back() = false;
|
|
}
|
|
if (EFLAG) anglepot.emplace_back(parsed.createCompiledExpression());
|
|
}
|
|
} catch (std::exception &e) {
|
|
error->all(FLERR, e.what());
|
|
}
|
|
|
|
const double *const *const x = atom->x;
|
|
double *const *const f = atom->f;
|
|
const int *const *const anglelist = neighbor->anglelist;
|
|
const int nanglelist = neighbor->nanglelist;
|
|
const int nlocal = atom->nlocal;
|
|
|
|
for (int n = 0; n < nanglelist; n++) {
|
|
const int i1 = anglelist[n][0];
|
|
const int i2 = anglelist[n][1];
|
|
const int i3 = anglelist[n][2];
|
|
const int type = anglelist[n][3];
|
|
|
|
// 1st bond
|
|
|
|
const double delx1 = x[i1][0] - x[i2][0];
|
|
const double dely1 = x[i1][1] - x[i2][1];
|
|
const double delz1 = x[i1][2] - x[i2][2];
|
|
|
|
const double rsq1 = delx1 * delx1 + dely1 * dely1 + delz1 * delz1;
|
|
const double r1 = sqrt(rsq1);
|
|
|
|
// 2nd bond
|
|
|
|
const double delx2 = x[i3][0] - x[i2][0];
|
|
const double dely2 = x[i3][1] - x[i2][1];
|
|
const double delz2 = x[i3][2] - x[i2][2];
|
|
|
|
const double rsq2 = delx2 * delx2 + dely2 * dely2 + delz2 * delz2;
|
|
const double r2 = sqrt(rsq2);
|
|
|
|
// angle (cos and sin)
|
|
|
|
double c = delx1 * delx2 + dely1 * dely2 + delz1 * delz2;
|
|
c /= r1 * r2;
|
|
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
double s = sqrt(1.0 - c * c);
|
|
if (s < SMALL) s = SMALL;
|
|
s = 1.0 / s;
|
|
|
|
// force and energy
|
|
|
|
const double dtheta = acos(c) - theta0[type];
|
|
const int idx = type2expression[type];
|
|
if (has_ref[idx]) angleforce[idx].getVariableReference("theta") = dtheta;
|
|
const double a = -angleforce[idx].evaluate() * s;
|
|
const double a11 = a * c / rsq1;
|
|
const double a12 = -a / (r1 * r2);
|
|
const double a22 = a * c / rsq2;
|
|
|
|
double f1[3], f3[3];
|
|
f1[0] = a11 * delx1 + a12 * delx2;
|
|
f1[1] = a11 * dely1 + a12 * dely2;
|
|
f1[2] = a11 * delz1 + a12 * delz2;
|
|
f3[0] = a22 * delx2 + a12 * delx1;
|
|
f3[1] = a22 * dely2 + a12 * dely1;
|
|
f3[2] = a22 * delz2 + a12 * delz1;
|
|
|
|
// apply force to each of 3 atoms
|
|
|
|
if (NEWTON_BOND || i1 < nlocal) {
|
|
f[i1][0] += f1[0];
|
|
f[i1][1] += f1[1];
|
|
f[i1][2] += f1[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i2 < nlocal) {
|
|
f[i2][0] -= f1[0] + f3[0];
|
|
f[i2][1] -= f1[1] + f3[1];
|
|
f[i2][2] -= f1[2] + f3[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i3 < nlocal) {
|
|
f[i3][0] += f3[0];
|
|
f[i3][1] += f3[1];
|
|
f[i3][2] += f3[2];
|
|
}
|
|
|
|
double eangle = 0.0;
|
|
if (EFLAG) {
|
|
try {
|
|
anglepot[idx].getVariableReference("theta") = dtheta;
|
|
} catch (Lepton::Exception &) {
|
|
; // ignore -> constant force
|
|
}
|
|
eangle = anglepot[idx].evaluate() - offset[type];
|
|
}
|
|
if (EVFLAG)
|
|
ev_tally(i1, i2, i3, nlocal, NEWTON_BOND, eangle, f1, f3, delx1, dely1, delz1, delx2, dely2,
|
|
delz2);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::allocate()
|
|
{
|
|
allocated = 1;
|
|
const int np1 = atom->nangletypes + 1;
|
|
|
|
memory->create(theta0, np1, "angle:theta0");
|
|
memory->create(type2expression, np1, "angle:type2expression");
|
|
memory->create(offset, np1, "angle:offset");
|
|
memory->create(setflag, np1, "angle:setflag");
|
|
for (int i = 1; i < np1; i++) setflag[i] = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::settings(int narg, char **arg)
|
|
{
|
|
auto_offset = 1;
|
|
if (narg > 0) {
|
|
if (strcmp(arg[0],"auto_offset") == 0) {
|
|
auto_offset = 1;
|
|
} else if (strcmp(arg[0],"no_offset") == 0) {
|
|
auto_offset = 0;
|
|
} else {
|
|
error->all(FLERR, "Unknown angle style lepton setting {}", arg[0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more types
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 3) error->all(FLERR, "Incorrect number of args for angle coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo, ihi;
|
|
utils::bounds(FLERR, arg[0], 1, atom->nangletypes, ilo, ihi, error);
|
|
|
|
double theta0_one = utils::numeric(FLERR, arg[1], false, lmp);
|
|
|
|
// remove whitespace and quotes from expression string and then
|
|
// check if the expression can be parsed and evaluated without error
|
|
std::string exp_one = LeptonUtils::condense(arg[2]);
|
|
double offset_one = 0.0;
|
|
try {
|
|
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(exp_one, lmp));
|
|
auto anglepot = parsed.createCompiledExpression();
|
|
auto angleforce = parsed.differentiate("theta").createCompiledExpression();
|
|
try {
|
|
anglepot.getVariableReference("theta") = 0.0;
|
|
} catch (Lepton::Exception &) {
|
|
if (comm->me == 0)
|
|
error->warning(FLERR, "Lepton potential expression {} does not depend on 'theta'", exp_one);
|
|
}
|
|
try {
|
|
angleforce.getVariableReference("theta") = 0.0;
|
|
} catch (Lepton::Exception &) {
|
|
if (comm->me == 0)
|
|
error->warning(FLERR, "Force from Lepton expression {} does not depend on 'theta'",
|
|
exp_one);
|
|
}
|
|
if (auto_offset) offset_one = anglepot.evaluate();
|
|
angleforce.evaluate();
|
|
} catch (std::exception &e) {
|
|
error->all(FLERR, e.what());
|
|
}
|
|
|
|
std::size_t idx = 0;
|
|
for (const auto &exp : expressions) {
|
|
if (exp == exp_one) break;
|
|
++idx;
|
|
}
|
|
|
|
// if not found, add to list
|
|
if ((expressions.size() == 0) || (idx == expressions.size())) expressions.push_back(exp_one);
|
|
|
|
// convert theta0 from degrees to radians
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
theta0[i] = DEG2RAD * theta0_one;
|
|
type2expression[i] = idx;
|
|
offset[i] = offset_one;
|
|
setflag[i] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR, "Incorrect args for angle coefficients");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double AngleLepton::equilibrium_angle(int i)
|
|
{
|
|
return theta0[i];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::write_restart(FILE *fp)
|
|
{
|
|
fwrite(&theta0[1], sizeof(double), atom->nangletypes, fp);
|
|
fwrite(&type2expression[1], sizeof(int), atom->nangletypes, fp);
|
|
fwrite(&offset[1], sizeof(double), atom->nangletypes, fp);
|
|
|
|
int num = expressions.size();
|
|
int maxlen = 0;
|
|
for (const auto &exp : expressions) maxlen = MAX(maxlen, (int) exp.size());
|
|
++maxlen;
|
|
|
|
fwrite(&num, sizeof(int), 1, fp);
|
|
fwrite(&maxlen, sizeof(int), 1, fp);
|
|
for (const auto &exp : expressions) {
|
|
int n = exp.size() + 1;
|
|
fwrite(&n, sizeof(int), 1, fp);
|
|
fwrite(exp.c_str(), sizeof(char), n, fp);
|
|
}
|
|
fwrite(&auto_offset, sizeof(int), 1, fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::read_restart(FILE *fp)
|
|
{
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
utils::sfread(FLERR, &theta0[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &type2expression[1], sizeof(int), atom->nangletypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &offset[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
|
|
}
|
|
MPI_Bcast(&theta0[1], atom->nangletypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&type2expression[1], atom->nangletypes, MPI_INT, 0, world);
|
|
MPI_Bcast(&offset[1], atom->nangletypes, MPI_DOUBLE, 0, world);
|
|
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
|
|
|
|
int num, maxlen, len;
|
|
if (comm->me == 0) {
|
|
utils::sfread(FLERR, &num, sizeof(int), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &maxlen, sizeof(int), 1, fp, nullptr, error);
|
|
}
|
|
MPI_Bcast(&num, 1, MPI_INT, 0, world);
|
|
MPI_Bcast(&maxlen, 1, MPI_INT, 0, world);
|
|
|
|
char *buf = new char[maxlen];
|
|
|
|
for (int i = 0; i < num; ++i) {
|
|
if (comm->me == 0) {
|
|
utils::sfread(FLERR, &len, sizeof(int), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, buf, sizeof(char), len, fp, nullptr, error);
|
|
}
|
|
MPI_Bcast(buf, maxlen, MPI_CHAR, 0, world);
|
|
expressions.emplace_back(buf);
|
|
}
|
|
|
|
if (comm->me == 0) utils::sfread(FLERR, &auto_offset, sizeof(int), 1, fp, nullptr, error);
|
|
MPI_Bcast(&auto_offset, 1, MPI_INT, 0, world);
|
|
|
|
delete[] buf;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to data file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void AngleLepton::write_data(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->nangletypes; i++)
|
|
fprintf(fp, "%d %g %s\n", i, RAD2DEG * theta0[i], expressions[type2expression[i]].c_str());
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double AngleLepton::single(int type, int i1, int i2, int i3)
|
|
{
|
|
double **x = atom->x;
|
|
|
|
double delx1 = x[i1][0] - x[i2][0];
|
|
double dely1 = x[i1][1] - x[i2][1];
|
|
double delz1 = x[i1][2] - x[i2][2];
|
|
domain->minimum_image(delx1, dely1, delz1);
|
|
double r1 = sqrt(delx1 * delx1 + dely1 * dely1 + delz1 * delz1);
|
|
|
|
double delx2 = x[i3][0] - x[i2][0];
|
|
double dely2 = x[i3][1] - x[i2][1];
|
|
double delz2 = x[i3][2] - x[i2][2];
|
|
domain->minimum_image(delx2, dely2, delz2);
|
|
double r2 = sqrt(delx2 * delx2 + dely2 * dely2 + delz2 * delz2);
|
|
|
|
double c = delx1 * delx2 + dely1 * dely2 + delz1 * delz2;
|
|
c /= r1 * r2;
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
double dtheta = acos(c) - theta0[type];
|
|
const auto &expr = expressions[type2expression[type]];
|
|
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp));
|
|
auto anglepot = parsed.createCompiledExpression();
|
|
try {
|
|
anglepot.getVariableReference("theta") = dtheta;
|
|
} catch (Lepton::Exception &) {
|
|
; // ignore -> constant potential
|
|
}
|
|
return anglepot.evaluate() - offset[type];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
return ptr to internal members upon request
|
|
------------------------------------------------------------------------ */
|
|
|
|
void *AngleLepton::extract(const char *str, int &dim)
|
|
{
|
|
dim = 1;
|
|
if (str) {
|
|
std::string keyword(str);
|
|
if (keyword == "theta0") return (void *) theta0;
|
|
}
|
|
return nullptr;
|
|
}
|