Files
lammps/src/LEPTON/fix_efield_lepton.cpp
2025-01-18 11:37:53 -05:00

374 lines
11 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Gabriel Alkuino (Syracuse University) - gsalkuin@syr.edu
Modified from fix_efield
------------------------------------------------------------------------- */
#include "fix_efield_lepton.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "input.h"
#include "modify.h"
#include "region.h"
#include "respa.h"
#include "update.h"
#include <array>
#include "Lepton.h"
#include "lepton_utils.h"
using namespace LAMMPS_NS;
using namespace FixConst;
#define EPSILON 1.0e-10
/* ---------------------------------------------------------------------- */
FixEfieldLepton::FixEfieldLepton(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg), idregion(nullptr), region(nullptr)
{
if (domain->xperiodic || domain->yperiodic || domain->zperiodic) {
if (comm->me == 0)
error->warning(FLERR, "Fix {} uses unwrapped coordinates", style);
}
if (narg < 4) utils::missing_cmd_args(FLERR, std::string("fix ") + style, error);
scalar_flag = 1;
global_freq = 1;
extscalar = 1;
energy_global_flag = 1;
virial_global_flag = virial_peratom_flag = 1;
respa_level_support = 1;
ilevel_respa = 0;
qe2f = force->qe2f;
mue2e = qe2f;
// optional args
int iarg = 4;
while (iarg < narg) {
if (strcmp(arg[iarg], "region") == 0) {
if (iarg + 2 > narg)
utils::missing_cmd_args(FLERR, std::string("fix ") + style + " region", error);
region = domain->get_region_by_id(arg[iarg + 1]);
if (!region) error->all(FLERR, "Region {} for fix {} does not exist", arg[iarg + 1], style);
delete[] idregion;
idregion = utils::strdup(arg[iarg + 1]);
iarg += 2;
} else if (strcmp(arg[iarg], "step") == 0) {
if (iarg + 2 > narg)
utils::missing_cmd_args(FLERR, std::string("fix ") + style + "step", error);
h = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
iarg += 2;
} else {
error->all(FLERR, "Unknown keyword for fix {} command: {}", style, arg[iarg]);
}
}
// check validity of Lepton expression
// remove whitespace and quotes from expression string and then
// check if the expression can be parsed without error
expr = LeptonUtils::condense(arg[3]);
try {
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp));
auto phi = parsed.createCompiledExpression();
} catch (std::exception &e) {
error->all(FLERR, e.what());
}
force_flag = 0;
fsum[0] = fsum[1] = fsum[2] = fsum[3] = 0.0;
}
/* ---------------------------------------------------------------------- */
FixEfieldLepton::~FixEfieldLepton()
{
delete[] idregion;
}
/* ---------------------------------------------------------------------- */
int FixEfieldLepton::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= POST_FORCE_RESPA;
mask |= MIN_POST_FORCE;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::init()
{
if (!atom->q_flag && !atom->mu_flag)
error->all(FLERR, "Fix {} requires atom attribute q or mu", style);
if (atom->mu_flag && !atom->torque_flag)
error->all(FLERR, "Dipoles must be finite-sized to rotate", style);
// set index and check validity of region
if (idregion) {
region = domain->get_region_by_id(idregion);
if (!region) error->all(FLERR, "Region {} for fix {} does not exist", idregion, style);
}
if (utils::strmatch(update->integrate_style, "^respa")) {
auto respa = dynamic_cast<Respa *>(update->integrate);
if (respa) ilevel_respa = respa->nlevels - 1;
if (respa_level >= 0) ilevel_respa = MIN(respa_level, ilevel_respa);
}
// unit conversion restrictions (see issue #1377)
char *unit_style = update->unit_style;
if (strcmp(unit_style, "electron") == 0 || strcmp(unit_style, "micro") == 0 ||
strcmp(unit_style, "nano") == 0) {
error->all(FLERR, "Fix {} does not support {} units", style, unit_style);
}
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::setup(int vflag)
{
if (utils::strmatch(update->integrate_style, "^respa")) {
auto respa = dynamic_cast<Respa *>(update->integrate);
if (respa) {
respa->copy_flevel_f(ilevel_respa);
post_force_respa(vflag, ilevel_respa, 0);
respa->copy_f_flevel(ilevel_respa);
}
} else {
post_force(vflag);
}
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::min_setup(int vflag)
{
post_force(vflag);
}
/* ----------------------------------------------------------------------
Apply F = qE,
F = (mu . D) E,
T = mu x E
------------------------------------------------------------------------- */
void FixEfieldLepton::post_force(int vflag)
{
double **f = atom->f;
double **x = atom->x;
int *mask = atom->mask;
imageint *image = atom->image;
int nlocal = atom->nlocal;
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp)).optimize();
Lepton::CompiledExpression phi;
auto dphi_x = parsed.differentiate("x").createCompiledExpression();
auto dphi_y = parsed.differentiate("y").createCompiledExpression();
auto dphi_z = parsed.differentiate("z").createCompiledExpression();
std::array<Lepton::CompiledExpression *, 3> dphis = {&dphi_x, &dphi_y, &dphi_z};
// array of vectors of ptrs to Lepton variable references
std::array<std::vector<double *>, 3> var_ref_ptrs{};
// fill ptr-vectors with Lepton refs as needed
const char *DIM_NAMES[] = {"x", "y", "z"};
if (atom->q_flag) {
phi = parsed.createCompiledExpression();
for (size_t d = 0; d < 3; d++) {
try {
double *ptr = &(phi.getVariableReference(DIM_NAMES[d]));
var_ref_ptrs[d].push_back(ptr);
} catch (Lepton::Exception &) {
// do nothing
}
}
}
bool e_uniform = true;
for (size_t j = 0; j < 3; j++)
for (size_t d = 0; d < 3; d++) {
try {
double *ptr = &((*dphis[j]).getVariableReference(DIM_NAMES[d]));
var_ref_ptrs[d].push_back(ptr);
e_uniform = false;
} catch (Lepton::Exception &) {
// do nothing
}
}
if (!e_uniform && atom->mu_flag && h < 0) {
error->all(FLERR, "Fix {} requires keyword `step' for dipoles in a non-uniform electric field",
style);
}
// virial setup
v_init(vflag);
// update region if necessary
if (region) region->prematch();
// fsum[0] = "potential energy" for added force
// fsum[123] = extra force added to atoms
fsum[0] = fsum[1] = fsum[2] = fsum[3] = 0.0;
force_flag = 0;
double ex, ey, ez;
double fx, fy, fz;
double v[6], unwrap[3], dstep[3];
double exf, eyf, ezf, exb, eyb, ezb;
double mu_norm, h_mu;
double *q = atom->q;
double **mu = atom->mu;
double **t = atom->torque;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
fx = fy = fz = 0.0;
domain->unmap(x[i], image[i], unwrap);
// put unwrapped coords into Lepton variable refs
for (size_t d = 0; d < 3; d++) {
for (auto &var_ref_ptr : var_ref_ptrs[d]) { *var_ref_ptr = unwrap[d]; }
}
// evaluate e-field, used by q and mu
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
// charges
// force = q E
if (atom->q_flag) {
fx = qe2f * q[i] * ex;
fy = qe2f * q[i] * ey;
fz = qe2f * q[i] * ez;
// potential energy = q phi
fsum[0] += qe2f * q[i] * phi.evaluate();
}
if (atom->mu_flag) {
// dipoles
mu_norm = sqrt(mu[i][0] * mu[i][0] + mu[i][1] * mu[i][1] + mu[i][2] * mu[i][2]);
if (mu_norm > EPSILON) {
// torque = mu cross E
t[i][0] += mue2e * (ez * mu[i][1] - ey * mu[i][2]);
t[i][1] += mue2e * (ex * mu[i][2] - ez * mu[i][0]);
t[i][2] += mue2e * (ey * mu[i][0] - ex * mu[i][1]);
// potential energy = - mu dot E
fsum[0] -= mue2e * (mu[i][0] * ex + mu[i][1] * ey + mu[i][2] * ez);
// force = (mu dot D) E for non-uniform E
// using central difference method
if (!e_uniform) {
h_mu = h / mu_norm;
dstep[0] = h_mu * mu[i][0];
dstep[1] = h_mu * mu[i][1];
dstep[2] = h_mu * mu[i][2];
// one step forwards, two steps back ;)
for (size_t d = 0; d < 3; d++) {
for (auto &var_ref_ptr : var_ref_ptrs[d]) { *var_ref_ptr += dstep[d]; }
}
exf = -dphi_x.evaluate();
eyf = -dphi_y.evaluate();
ezf = -dphi_z.evaluate();
for (size_t d = 0; d < 3; d++) {
for (auto &var_ref_ptr : var_ref_ptrs[d]) { *var_ref_ptr -= 2 * dstep[d]; }
}
exb = -dphi_x.evaluate();
eyb = -dphi_y.evaluate();
ezb = -dphi_z.evaluate();
fx += qe2f * (exf - exb) / 2.0 / h_mu;
fy += qe2f * (eyf - eyb) / 2.0 / h_mu;
fz += qe2f * (ezf - ezb) / 2.0 / h_mu;
}
}
}
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
if (ilevel == ilevel_respa) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::min_post_force(int vflag)
{
post_force(vflag);
}
/* ----------------------------------------------------------------------
return energy added by fix
------------------------------------------------------------------------- */
double FixEfieldLepton::compute_scalar()
{
if (force_flag == 0) {
MPI_Allreduce(fsum, fsum_all, 4, MPI_DOUBLE, MPI_SUM, world);
force_flag = 1;
}
return fsum_all[0];
}
/* ----------------------------------------------------------------------
return total extra force due to fix
------------------------------------------------------------------------- */
double FixEfieldLepton::compute_vector(int n)
{
if (force_flag == 0) {
MPI_Allreduce(fsum, fsum_all, 4, MPI_DOUBLE, MPI_SUM, world);
force_flag = 1;
}
return fsum_all[n + 1];
}