Files
lammps/src/SPIN/pair_spin_neel.cpp
2021-05-24 14:18:20 -04:00

741 lines
22 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Julien Tranchida (SNL)
Aidan Thompson (SNL)
Please cite the related publication:
Tranchida, J., Plimpton, S. J., Thibaudeau, P., & Thompson, A. P. (2018).
Massively parallel symplectic algorithm for coupled magnetic spin dynamics
and molecular dynamics. Journal of Computational Physics.
------------------------------------------------------------------------- */
#include "pair_spin_neel.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
PairSpinNeel::~PairSpinNeel()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(cut_spin_neel);
memory->destroy(g1);
memory->destroy(g1_mech);
memory->destroy(g2);
memory->destroy(g3);
memory->destroy(q1);
memory->destroy(q1_mech);
memory->destroy(q2);
memory->destroy(q3);
memory->destroy(cutsq); // to be deleted
memory->destroy(emag);
}
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairSpinNeel::settings(int narg, char **arg)
{
PairSpin::settings(narg,arg);
cut_spin_neel_global = utils::numeric(FLERR,arg[0],false,lmp);
// reset cutoffs that have been explicitly set
if (allocated) {
int i,j;
for (i = 1; i <= atom->ntypes; i++) {
for (j = i+1; j <= atom->ntypes; j++) {
if (setflag[i][j]) {
cut_spin_neel[i][j] = cut_spin_neel_global;
}
}
}
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type spin pairs (only one for now)
------------------------------------------------------------------------- */
void PairSpinNeel::coeff(int narg, char **arg)
{
if (!allocated) allocate();
// check if args correct
if (strcmp(arg[2],"neel") != 0)
error->all(FLERR,"Incorrect args in pair_style command");
if (narg != 10)
error->all(FLERR,"Incorrect args in pair_style command");
int ilo,ihi,jlo,jhi;
utils::bounds(FLERR,arg[0],1,atom->ntypes,ilo,ihi,error);
utils::bounds(FLERR,arg[1],1,atom->ntypes,jlo,jhi,error);
const double rij = utils::numeric(FLERR,arg[3],false,lmp);
const double k1 = utils::numeric(FLERR,arg[4],false,lmp);
const double k2 = utils::numeric(FLERR,arg[5],false,lmp);
const double k3 = utils::numeric(FLERR,arg[6],false,lmp);
const double l1 = utils::numeric(FLERR,arg[7],false,lmp);
const double l2 = utils::numeric(FLERR,arg[8],false,lmp);
const double l3 = utils::numeric(FLERR,arg[9],false,lmp);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
cut_spin_neel[i][j] = rij;
g1[i][j] = k1/hbar;
q1[i][j] = l1/hbar;
g1_mech[i][j] = k1;
q1_mech[i][j] = l1;
g2[i][j] = k2;
g3[i][j] = k3;
q2[i][j] = l2;
q3[i][j] = l3;
setflag[i][j] = 1;
count++;
}
}
if (count == 0)
error->all(FLERR,"Incorrect args in pair_style command");
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairSpinNeel::init_one(int i, int j)
{
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
g1[j][i] = g1[i][j];
g1_mech[j][i] = g1_mech[i][j];
g2[j][i] = g2[i][j];
g3[j][i] = g3[i][j];
q1[j][i] = q1[i][j];
q1_mech[j][i] = q1_mech[i][j];
q2[j][i] = q2[i][j];
q3[j][i] = q3[i][j];
return cut_spin_neel_global;
}
/* ----------------------------------------------------------------------
extract the larger cutoff
------------------------------------------------------------------------- */
void *PairSpinNeel::extract(const char *str, int &dim)
{
dim = 0;
if (strcmp(str,"cut") == 0) return (void *) &cut_spin_neel_global;
return nullptr;
}
/* ---------------------------------------------------------------------- */
void PairSpinNeel::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double evdwl,ecoul;
double xi[3], rij[3], eij[3];
double spi[3], spj[3];
double fi[3], fmi[3];
double local_cut2;
double rsq, inorm;
int *ilist,*jlist,*numneigh,**firstneigh;
evdwl = ecoul = 0.0;
ev_init(eflag,vflag);
double **x = atom->x;
double **f = atom->f;
double **fm = atom->fm;
double **sp = atom->sp;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// checking size of emag
if (nlocal_max < nlocal) { // grow emag lists if necessary
nlocal_max = nlocal;
memory->grow(emag,nlocal_max,"pair/spin:emag");
}
// computation of the neel interaction
// loop over atoms and their neighbors
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
xi[0] = x[i][0];
xi[1] = x[i][1];
xi[2] = x[i][2];
spi[0] = sp[i][0];
spi[1] = sp[i][1];
spi[2] = sp[i][2];
emag[i] = 0.0;
// loop on neighbors
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
spj[0] = sp[j][0];
spj[1] = sp[j][1];
spj[2] = sp[j][2];
evdwl = 0.0;
fi[0] = fi[1] = fi[2] = 0.0;
fmi[0] = fmi[1] = fmi[2] = 0.0;
rij[0] = rij[1] = rij[2] = 0.0;
rij[0] = x[j][0] - xi[0];
rij[1] = x[j][1] - xi[1];
rij[2] = x[j][2] - xi[2];
rsq = rij[0]*rij[0] + rij[1]*rij[1] + rij[2]*rij[2];
inorm = 1.0/sqrt(rsq);
eij[0] = rij[0]*inorm;
eij[1] = rij[1]*inorm;
eij[2] = rij[2]*inorm;
itype = type[i];
jtype = type[j];
local_cut2 = cut_spin_neel[itype][jtype]*cut_spin_neel[itype][jtype];
// compute neel interaction
if (rsq <= local_cut2) {
compute_neel(i,j,rsq,eij,fmi,spi,spj);
if (lattice_flag)
compute_neel_mech(i,j,rsq,eij,fi,spi,spj);
f[i][0] += fi[0];
f[i][1] += fi[1];
f[i][2] += fi[2];
if (newton_pair || j < nlocal) {
f[j][0] -= fi[0];
f[j][1] -= fi[1];
f[j][2] -= fi[2];
}
fm[i][0] += fmi[0];
fm[i][1] += fmi[1];
fm[i][2] += fmi[2];
if (eflag) {
evdwl -= compute_neel_energy(i,j,rsq,eij,spi,spj);
emag[i] += evdwl;
} else evdwl = 0.0;
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,
evdwl,ecoul,fi[0],fi[1],fi[2],rij[0],rij[1],rij[2]);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
update the pair interactions fmi acting on the spin ii
------------------------------------------------------------------------- */
void PairSpinNeel::compute_single_pair(int ii, double fmi[3])
{
int *type = atom->type;
double **x = atom->x;
double **sp = atom->sp;
double local_cut2;
double xi[3], rij[3], eij[3];
double spi[3], spj[3];
int j,jnum,itype,jtype,ntypes;
int k,locflag;
int *jlist,*numneigh,**firstneigh;
double rsq, inorm;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// check if interaction applies to type of ii
itype = type[ii];
ntypes = atom->ntypes;
locflag = 0;
k = 1;
while (k <= ntypes) {
if (k <= itype) {
if (setflag[k][itype] == 1) {
locflag =1;
break;
}
k++;
} else if (k > itype) {
if (setflag[itype][k] == 1) {
locflag =1;
break;
}
k++;
} else error->all(FLERR,"Wrong type number");
}
// if interaction applies to type ii,
// locflag = 1 and compute pair interaction
if (locflag == 1) {
spi[0] = sp[ii][0];
spi[1] = sp[ii][1];
spi[2] = sp[ii][2];
xi[0] = x[ii][0];
xi[1] = x[ii][1];
xi[2] = x[ii][2];
eij[0] = eij[1] = eij[2] = 0.0;
jlist = firstneigh[ii];
jnum = numneigh[ii];
for (int jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
jtype = type[j];
local_cut2 = cut_spin_neel[itype][jtype]*cut_spin_neel[itype][jtype];
spj[0] = sp[j][0];
spj[1] = sp[j][1];
spj[2] = sp[j][2];
rij[0] = x[j][0] - xi[0];
rij[1] = x[j][1] - xi[1];
rij[2] = x[j][2] - xi[2];
rsq = rij[0]*rij[0] + rij[1]*rij[1] + rij[2]*rij[2];
inorm = 1.0/sqrt(rsq);
eij[0] = inorm*rij[0];
eij[1] = inorm*rij[1];
eij[2] = inorm*rij[2];
if (rsq <= local_cut2) {
compute_neel(ii,j,rsq,eij,fmi,spi,spj);
}
}
}
}
/* ---------------------------------------------------------------------- */
void PairSpinNeel::compute_neel(int i, int j, double rsq, double eij[3], double fmi[3], double spi[3], double spj[3])
{
int *type = atom->type;
int itype, jtype;
itype = type[i];
jtype = type[j];
double qr,gr,g1r,q1r,q2r,ra;
double pdx, pdy, pdz;
double pq1x, pq1y, pq1z;
double pq2x, pq2y, pq2z;
double eij_si,eij_sj,si_sj,eij_si_2,eij_sj_3,coeff1;
// compute Neel's functions
ra = rsq/g3[itype][jtype]/g3[itype][jtype];
gr = 4.0*g1[itype][jtype]*ra;
gr *= (1.0-g2[itype][jtype]*ra);
gr *= exp(-ra);
ra = rsq/q3[itype][jtype]/q3[itype][jtype];
qr = 4.0*q1[itype][jtype]*ra;
qr *= (1.0-q2[itype][jtype]*ra);
qr *= exp(-ra);
g1r = (gr + 12.0*qr/35.0);
q1r = 9.0*qr/5.0;
q2r = -2.0*qr/5.0;
// pseudo-dipolar component
eij_si = eij[0]*spi[0] + eij[1]*spi[1] + eij[2]*spi[2];
eij_sj = eij[0]*spj[0] + eij[1]*spj[1] + eij[2]*spj[2];
si_sj = spi[0]*spj[0] + spi[1]*spj[1] + spi[2]*spj[2];
pdx = g1r*(eij_sj*eij[0] - spj[0]/3.0);
pdy = g1r*(eij_sj*eij[1] - spj[1]/3.0);
pdz = g1r*(eij_sj*eij[2] - spj[2]/3.0);
// pseudo-quadrupolar components
eij_si_2 = eij_si*eij_si;
pq1x = -(eij_si_2 - si_sj/3.0)*spj[0]/3.0;
pq1y = -(eij_si_2 - si_sj/3.0)*spj[1]/3.0;
pq1z = -(eij_si_2 - si_sj/3.0)*spj[2]/3.0;
coeff1 = (eij_sj*eij_sj-si_sj/3.0);
pq1x += coeff1*(2.0*eij_si*eij[0] - spj[0]/3.0);
pq1y += coeff1*(2.0*eij_si*eij[1] - spj[1]/3.0);
pq1z += coeff1*(2.0*eij_si*eij[2] - spj[2]/3.0);
pq1x *= q1r;
pq1y *= q1r;
pq1z *= q1r;
eij_sj_3 = eij_sj*eij_sj*eij_sj;
pq2x = 3.0*eij_si_2*eij_sj*eij[0] + eij_sj_3*eij[0];
pq2y = 3.0*eij_si_2*eij_sj*eij[1] + eij_sj_3*eij[1];
pq2z = 3.0*eij_si_2*eij_sj*eij[2] + eij_sj_3*eij[2];
pq2x *= q2r;
pq2y *= q2r;
pq2z *= q2r;
// adding three contributions
fmi[0] += (pdx + pq1x + pq2x);
fmi[1] += (pdy + pq1y + pq2y);
fmi[2] += (pdz + pq1z + pq2z);
}
/* ---------------------------------------------------------------------- */
void PairSpinNeel::compute_neel_mech(int i, int j, double rsq, double eij[3], double fi[3], double spi[3], double spj[3])
{
int *type = atom->type;
int itype, jtype;
itype = type[i];
jtype = type[j];
double g_mech, gij, dgij;
double q_mech, q1ij, dq1ij;
double q2ij, dq2ij;
double pdx, pdy, pdz;
double pq1x, pq1y, pq1z;
double pq2x, pq2y, pq2z;
double ra, rr, drij, ig3, iq3;
drij = sqrt(rsq);
double scalar_si_sj = spi[0]*spj[0]+spi[1]*spj[1]+spi[2]*spj[2];
double scalar_eij_si = eij[0]*spi[0]+eij[1]*spi[1]+eij[2]*spi[2];
double scalar_eij_sj = eij[0]*spj[0]+eij[1]*spj[1]+eij[2]*spj[2];
// pseudo-dipolar component
g_mech = g1_mech[itype][jtype];
ig3 = 1.0/(g3[itype][jtype]*g3[itype][jtype]);
ra = rsq*ig3;
rr = drij*ig3;
gij = 4.0*g_mech*ra;
gij *= (1.0-g2[itype][jtype]*ra);
gij *= exp(-ra);
dgij = 1.0-ra-g2[itype][jtype]*ra*(2.0-ra);
dgij *= 8.0*g_mech*rr*exp(-ra);
double pdt1 = (dgij-2.0*gij/drij)*scalar_eij_si*scalar_eij_sj;
pdt1 -= scalar_si_sj*dgij/3.0;
double pdt2 = scalar_eij_sj*gij/drij;
double pdt3 = scalar_eij_si*gij/drij;
pdx = -(pdt1*eij[0] + pdt2*spi[0] + pdt3*spj[0]);
pdy = -(pdt1*eij[1] + pdt2*spi[1] + pdt3*spj[1]);
pdz = -(pdt1*eij[2] + pdt2*spi[2] + pdt3*spj[2]);
// pseudo-quadrupolar component
q_mech = q1_mech[itype][jtype];
iq3 = 1.0/(q3[itype][jtype]*q3[itype][jtype]);
ra = rsq*iq3;
rr = drij*iq3;
q1ij = 4.0*q_mech*ra;
q1ij *= (1.0-q2[itype][jtype]*ra);
q1ij *= exp(-ra);
q2ij = -2.0*q1ij/9.0;
dq1ij = 1.0-ra-q2[itype][jtype]*ra*(2.0-ra);
dq1ij *= 8.0*q_mech*rr*exp(-ra);
dq2ij = -2.0*dq1ij/9.0;
double scalar_eij_si_2 = scalar_eij_si*scalar_eij_si;
double scalar_eij_sj_2 = scalar_eij_sj*scalar_eij_sj;
double pqt1 = scalar_eij_si_2 - scalar_si_sj/3.0;
double pqt2 = scalar_eij_sj_2 - scalar_si_sj/3.0;
pq1x = dq1ij * pqt1 * pqt2 * eij[0];
pq1y = dq1ij * pqt1 * pqt2 * eij[1];
pq1z = dq1ij * pqt1 * pqt2 * eij[2];
double scalar_eij_si_3 = scalar_eij_si*scalar_eij_si*scalar_eij_si;
double scalar_eij_sj_3 = scalar_eij_sj*scalar_eij_sj*scalar_eij_sj;
double scalar_si_sj_2 = scalar_si_sj*scalar_si_sj;
/* double pqt3 = 2.0*scalar_eij_si*scalar_eij_sj_3/drij;
double pqt4 = 2.0*scalar_eij_sj*scalar_eij_si_3/drij;
double pqt5 = -2.0*scalar_si_sj*scalar_eij_si/(3.0*drij);
double pqt6 = -2.0*scalar_si_sj*scalar_eij_sj/(3.0*drij);
// pq1x += q1ij*(spi[0]*(pqt3+pqt6) + spj[0]*(pqt4+));
pq1x += q1ij*(pqt3*spi[0]+pqt4*spj[0]+pqt5*spi[0]+pqt6*spi[0]);
pq1y += q1ij*(pqt3*spi[1]+pqt4*spj[1]+pqt5*spi[1]+pqt6*spj[1]);
pq1z += q1ij*(pqt3*spi[2]+pqt4*spj[2]+pqt5*spi[2]+pqt6*spj[2]);
*/
double pqt3 = 2.0*scalar_eij_si*(scalar_eij_sj_2-scalar_si_sj/3.0)/drij;
double pqt4 = 2.0*scalar_eij_sj*(scalar_eij_si_2-scalar_si_sj/3.0)/drij;
pq1x += q1ij*(pqt3*spi[0] + pqt4*spj[0]);
pq1y += q1ij*(pqt3*spi[1] + pqt4*spj[1]);
pq1z += q1ij*(pqt3*spi[2] + pqt4*spj[2]);
double pqt7 = 4.0*scalar_eij_si_2*scalar_eij_sj_2/drij;
double pqt8 = 2.0*scalar_si_sj_2*scalar_eij_sj/(3.0*drij);
double pqt9 = 2.0*scalar_si_sj_2*scalar_eij_si/(3.0*drij);
pq1x -= q1ij*(pqt7 + pqt8 + pqt9)*eij[0];
pq1y -= q1ij*(pqt7 + pqt8 + pqt9)*eij[1];
pq1z -= q1ij*(pqt7 + pqt8 + pqt9)*eij[2];
/*
double pqt3 = 2.0*scalar_eij_si*(scalar_eij_sj_2-scalar_si_sj/3.0)/drij;
double pqt4 = 2.0*scalar_eij_sj*(scalar_eij_si_2-scalar_si_sj/3.0)/drij;
pq1x += q1ij*(pqt3*spi[0] + pqt4*spj[0]);
pq1y += q1ij*(pqt3*spi[1] + pqt4*spj[1]);
pq1z += q1ij*(pqt3*spi[2] + pqt4*spj[2]);
*/
//double scalar_eij_si_3 = scalar_eij_si*scalar_eij_si*scalar_eij_si;
//double scalar_eij_sj_3 = scalar_eij_sj*scalar_eij_sj*scalar_eij_sj;
double pqt10 = scalar_eij_sj*scalar_eij_si_3;
double pqt11 = scalar_eij_si*scalar_eij_sj_3;
pq2x = dq2ij*(pqt10 + pqt11)*eij[0];
pq2y = dq2ij*(pqt10 + pqt11)*eij[1];
pq2z = dq2ij*(pqt10 + pqt11)*eij[2];
double pqt12 = scalar_eij_si_3/drij;
double pqt13 = scalar_eij_sj_3/drij;
double pqt14 = 3.0*scalar_eij_sj*scalar_eij_si_2/drij;
double pqt15 = 3.0*scalar_eij_si*scalar_eij_sj_2/drij;
pq2x += q2ij*((pqt12+pqt15)*spj[0]+(pqt13+pqt14)*spi[0]);
pq2y += q2ij*((pqt12+pqt15)*spj[1]+(pqt13+pqt14)*spi[1]);
pq2z += q2ij*((pqt12+pqt15)*spj[2]+(pqt13+pqt14)*spi[2]);
double pqt16 = 4.0*scalar_eij_sj*scalar_eij_si_3/drij;
double pqt17 = 4.0*scalar_eij_si*scalar_eij_sj_3/drij;
pq2x -= q2ij*(pqt16 + pqt17)*eij[0];
pq2y -= q2ij*(pqt16 + pqt17)*eij[1];
pq2z -= q2ij*(pqt16 + pqt17)*eij[2];
// adding three contributions
fi[0] = 0.5*(pdx + pq1x + pq2x);
fi[1] = 0.5*(pdy + pq1y + pq2y);
fi[2] = 0.5*(pdz + pq1z + pq2z);
}
/* ---------------------------------------------------------------------- */
double PairSpinNeel::compute_neel_energy(int i, int j, double rsq, double eij[3], double spi[3], double spj[3])
{
int *type = atom->type;
int itype, jtype;
itype = type[i];
jtype = type[j];
double qr,gr,g1r,q1r,q2r,ra;
double epd,epq1,epq2;
double eij_si,eij_sj,si_sj;
double eij_si_2,eij_sj_2,eij_si_3,eij_sj_3;
// compute Neel's functions
ra = rsq/g3[itype][jtype]/g3[itype][jtype];
gr = 4.0*g1_mech[itype][jtype]*ra;
gr *= (1.0-g2[itype][jtype]*ra);
gr *= exp(-ra);
ra = rsq/q3[itype][jtype]/q3[itype][jtype];
qr = 4.0*q1_mech[itype][jtype]*ra;
qr *= (1.0-q2[itype][jtype]*ra);
qr *= exp(-ra);
g1r = (gr + 12.0*qr/35.0);
q1r = 9.0*qr/5.0;
q2r = -2.0*qr/5.0;
eij_si = eij[0]*spi[0] + eij[1]*spi[1] + eij[2]*spi[2];
eij_sj = eij[0]*spj[0] + eij[1]*spj[1] + eij[2]*spj[2];
si_sj = spi[0]*spj[0] + spi[1]*spj[1] + spi[2]*spj[2];
epd = g1r*(eij_si*eij_sj-si_sj/3.0);
eij_si_2 = eij_si*eij_si;
eij_sj_2 = eij_sj*eij_sj;
epq1 = q1r*(eij_si_2-si_sj/3.0)*(eij_sj_2-si_sj/3.0);
eij_si_3 = eij_si*eij_si_2;
eij_sj_3 = eij_sj*eij_sj_2;
epq2 = q2r*(eij_si*eij_sj_3+eij_sj*eij_si_3);
return 0.5*(epd+epq1+epq2);
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairSpinNeel::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cut_spin_neel,n+1,n+1,"pair/spin/soc/neel:cut_spin_neel");
memory->create(g1,n+1,n+1,"pair/spin/soc/neel:g1");
memory->create(g1_mech,n+1,n+1,"pair/spin/soc/neel:g1_mech");
memory->create(g2,n+1,n+1,"pair/spin/soc/neel:g2");
memory->create(g3,n+1,n+1,"pair/spin/soc/neel:g3");
memory->create(q1,n+1,n+1,"pair/spin/soc/neel:q1");
memory->create(q1_mech,n+1,n+1,"pair/spin/soc/neel:q1_mech");
memory->create(q2,n+1,n+1,"pair/spin/soc/neel:q2");
memory->create(q3,n+1,n+1,"pair/spin/soc/neel:q3");
memory->create(cutsq,n+1,n+1,"pair/spin/soc/neel:cutsq");
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairSpinNeel::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j],sizeof(int),1,fp);
if (setflag[i][j]) {
fwrite(&g1[i][j],sizeof(double),1,fp);
fwrite(&g1_mech[i][j],sizeof(double),1,fp);
fwrite(&g2[i][j],sizeof(double),1,fp);
fwrite(&g3[i][j],sizeof(double),1,fp);
fwrite(&q1[i][j],sizeof(double),1,fp);
fwrite(&q1_mech[i][j],sizeof(double),1,fp);
fwrite(&q2[i][j],sizeof(double),1,fp);
fwrite(&q3[i][j],sizeof(double),1,fp);
fwrite(&cut_spin_neel[i][j],sizeof(double),1,fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairSpinNeel::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++) {
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,nullptr,error);
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
if (setflag[i][j]) {
if (me == 0) {
utils::sfread(FLERR,&g1[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&g1_mech[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&g2[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&g3[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&q1[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&q1_mech[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&q2[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&q3[i][j],sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&cut_spin_neel[i][j],sizeof(double),1,fp,nullptr,error);
}
MPI_Bcast(&g1[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&g1_mech[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&g2[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&g3[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&q1[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&q1_mech[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&q2[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&q3[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&cut_spin_neel[i][j],1,MPI_DOUBLE,0,world);
}
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairSpinNeel::write_restart_settings(FILE *fp)
{
fwrite(&cut_spin_neel_global,sizeof(double),1,fp);
fwrite(&offset_flag,sizeof(int),1,fp);
fwrite(&mix_flag,sizeof(int),1,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairSpinNeel::read_restart_settings(FILE *fp)
{
if (comm->me == 0) {
utils::sfread(FLERR,&cut_spin_neel_global,sizeof(double),1,fp,nullptr,error);
utils::sfread(FLERR,&offset_flag,sizeof(int),1,fp,nullptr,error);
utils::sfread(FLERR,&mix_flag,sizeof(int),1,fp,nullptr,error);
}
MPI_Bcast(&cut_spin_neel_global,1,MPI_DOUBLE,0,world);
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
}