2054 lines
54 KiB
C++
2054 lines
54 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Amit Kumar and Michael Bybee (UIUC)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "pair_lubricateU.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "fix.h"
|
|
#include "fix_wall.h"
|
|
#include "force.h"
|
|
#include "input.h"
|
|
#include "math_const.h"
|
|
#include "memory.h"
|
|
#include "modify.h"
|
|
#include "neigh_list.h"
|
|
#include "neighbor.h"
|
|
#include "update.h"
|
|
#include "variable.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
|
|
static constexpr double TOL = 1e-4; // tolerance for conjugate gradient
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairLubricateU::PairLubricateU(LAMMPS *lmp) : Pair(lmp)
|
|
{
|
|
single_enable = 0;
|
|
|
|
// pair lubricateU cannot compute virial as F dot r
|
|
// due to how drag forces are applied to atoms
|
|
// correct method is how per-atom virial does it
|
|
|
|
no_virial_fdotr_compute = 1;
|
|
|
|
nmax = 0;
|
|
fl = Tl = xl = nullptr;
|
|
|
|
cgmax = 0;
|
|
bcg = xcg = rcg = rcg1 = pcg = RU = nullptr;
|
|
|
|
// set comm size needed by this Pair
|
|
|
|
comm_forward = 6;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairLubricateU::~PairLubricateU()
|
|
{
|
|
memory->destroy(fl);
|
|
memory->destroy(Tl);
|
|
memory->destroy(xl);
|
|
|
|
memory->destroy(bcg);
|
|
memory->destroy(xcg);
|
|
memory->destroy(rcg);
|
|
memory->destroy(rcg1);
|
|
memory->destroy(pcg);
|
|
memory->destroy(RU);
|
|
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(cutsq);
|
|
|
|
memory->destroy(cut);
|
|
memory->destroy(cut_inner);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
It first has to solve for the velocity of the particles such that
|
|
the net force on the particles is zero. NOTE: it has to be the last
|
|
type of pair interaction specified in the input file. Also, it
|
|
assumes that no other types of interactions, like k-space, is
|
|
present. As already mentioned, the net force on the particles after
|
|
this pair interaction would be identically zero.
|
|
---------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::compute(int eflag, int vflag)
|
|
{
|
|
int i,j;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
double **torque = atom->torque;
|
|
int nlocal = atom->nlocal;
|
|
int nghost = atom->nghost;
|
|
int nall = nlocal + nghost;
|
|
|
|
ev_init(eflag,vflag);
|
|
|
|
// skip compute() if called from integrate::setup()
|
|
// this is b/c do not want compute() to update velocities twice on a restart
|
|
// when restarting, call compute on step N (last step of prev run),
|
|
// again on step N (setup of restart run),
|
|
// then on step N+1 (first step of restart)
|
|
// so this is one extra time which leads to bad dynamics
|
|
|
|
if (update->setupflag) return;
|
|
|
|
// grow per-atom arrays if necessary
|
|
// need to be atom->nmax in length
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(fl);
|
|
memory->destroy(Tl);
|
|
memory->destroy(xl);
|
|
nmax = atom->nmax;
|
|
memory->create(fl,nmax,3,"pair:fl");
|
|
memory->create(Tl,nmax,3,"pair:Tl");
|
|
memory->create(xl,nmax,3,"pair:xl");
|
|
}
|
|
|
|
// Added to implement midpoint integration scheme
|
|
// Save force, torque found so far. Also save the positions
|
|
|
|
for (i=0;i<nlocal+nghost;i++) {
|
|
for (j=0;j<3;j++) {
|
|
fl[i][j] = f[i][j];
|
|
Tl[i][j] = torque[i][j];
|
|
xl[i][j] = x[i][j];
|
|
}
|
|
}
|
|
|
|
// Stage one of Midpoint method
|
|
// Solve for velocities based on initial positions
|
|
|
|
stage_one();
|
|
|
|
// find positions at half the timestep and store in xl
|
|
|
|
intermediates(nall,xl);
|
|
|
|
// store back the saved forces and torques in original arrays
|
|
|
|
for (i=0;i<nlocal+nghost;i++) {
|
|
for (j=0;j<3;j++) {
|
|
f[i][j] = fl[i][j];
|
|
torque[i][j] = Tl[i][j];
|
|
}
|
|
}
|
|
|
|
// stage two: this will give the final velocities
|
|
|
|
stage_two(xl);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------
|
|
Stage one of midpoint method
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::stage_one()
|
|
{
|
|
int i,j,ii,inum;
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double **omega = atom->omega;
|
|
double **torque = atom->torque;
|
|
|
|
int newton_pair = force->newton_pair;
|
|
int *ilist;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
|
|
if (6*inum > cgmax) {
|
|
memory->destroy(bcg);
|
|
memory->destroy(xcg);
|
|
memory->destroy(rcg);
|
|
memory->destroy(rcg1);
|
|
memory->destroy(pcg);
|
|
memory->destroy(RU);
|
|
cgmax = 6*inum;
|
|
memory->create(bcg,cgmax,"pair:bcg");
|
|
memory->create(xcg,cgmax,"pair:bcg");
|
|
memory->create(rcg,cgmax,"pair:bcg");
|
|
memory->create(rcg1,cgmax,"pair:bcg");
|
|
memory->create(pcg,cgmax,"pair:bcg");
|
|
memory->create(RU,cgmax,"pair:bcg");
|
|
}
|
|
|
|
double alpha,beta;
|
|
double normi,error,normig;
|
|
double send[2],recv[2],rcg_dot_rcg;
|
|
|
|
// First compute R_FE*E
|
|
|
|
compute_RE();
|
|
|
|
// Reverse communication of forces and torques to
|
|
// accumulate the net force on each of the particles
|
|
|
|
if (newton_pair) comm->reverse_comm();
|
|
|
|
// CONJUGATE GRADIENT
|
|
// Find the right hand side= -ve of all forces/torques
|
|
// b = 6*Npart in overall size
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
for (j = 0; j < 3; j++) {
|
|
bcg[6*ii+j] = -f[i][j];
|
|
bcg[6*ii+j+3] = -torque[i][j];
|
|
}
|
|
}
|
|
|
|
// Start solving the equation : F^H = -F^P -F^B - F^H_{Ef}
|
|
// Store initial guess for velocity and angular-velocities/angular momentum
|
|
// NOTE velocities and angular velocities are assumed relative to the fluid
|
|
|
|
for (ii=0;ii<inum;ii++)
|
|
for (j=0;j<3;j++) {
|
|
xcg[6*ii+j] = 0.0;
|
|
xcg[6*ii+j+3] = 0.0;
|
|
}
|
|
|
|
// Copy initial guess to the global arrays to be acted upon by R_{FU}
|
|
// and returned by f and torque arrays
|
|
|
|
copy_vec_uo(inum,xcg,v,omega);
|
|
|
|
// set velocities for ghost particles
|
|
|
|
comm->forward_comm(this);
|
|
|
|
// Find initial residual
|
|
|
|
compute_RU();
|
|
|
|
// reverse communication of forces and torques
|
|
|
|
if (newton_pair) comm->reverse_comm();
|
|
|
|
copy_uo_vec(inum,f,torque,RU);
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
rcg[i] = bcg[i] - RU[i];
|
|
|
|
// Set initial conjugate direction
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
pcg[i] = rcg[i];
|
|
|
|
// Find initial norm of the residual or norm of the RHS (either is fine)
|
|
|
|
normi = dot_vec_vec(6*inum,bcg,bcg);
|
|
|
|
MPI_Allreduce(&normi,&normig,1,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// Loop until convergence
|
|
|
|
do {
|
|
// find R*p
|
|
|
|
copy_vec_uo(inum,pcg,v,omega);
|
|
|
|
// set velocities for ghost particles
|
|
|
|
comm->forward_comm(this);
|
|
|
|
compute_RU();
|
|
|
|
// reverse communication of forces and torques
|
|
|
|
if (newton_pair) comm->reverse_comm();
|
|
|
|
|
|
copy_uo_vec(inum,f,torque,RU);
|
|
|
|
// Find alpha
|
|
|
|
send[0] = dot_vec_vec(6*inum,rcg,rcg);
|
|
send[1] = dot_vec_vec(6*inum,RU,pcg);
|
|
|
|
MPI_Allreduce(send,recv,2,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
alpha = recv[0]/recv[1];
|
|
rcg_dot_rcg = recv[0];
|
|
|
|
// Find new x
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
xcg[i] = xcg[i] + alpha*pcg[i];
|
|
|
|
// find new residual
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
rcg1[i] = rcg[i] - alpha*RU[i];
|
|
|
|
// find beta
|
|
|
|
send[0] = dot_vec_vec(6*inum,rcg1,rcg1);
|
|
|
|
MPI_Allreduce(send,recv,1,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
beta = recv[0]/rcg_dot_rcg;
|
|
|
|
// Find new conjugate direction
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
pcg[i] = rcg1[i] + beta*pcg[i];
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
rcg[i] = rcg1[i];
|
|
|
|
// Find relative error
|
|
|
|
error = sqrt(recv[0]/normig);
|
|
|
|
} while (error > TOL);
|
|
|
|
// update the final converged velocities in respective arrays
|
|
|
|
copy_vec_uo(inum,xcg,v,omega);
|
|
|
|
// set velocities for ghost particles
|
|
|
|
comm->forward_comm(this);
|
|
|
|
// Find actual particle's velocities from relative velocities
|
|
// Only non-zero component of fluid's vel : vx=gdot*y and wz=-gdot/2
|
|
|
|
for (ii=0;ii<inum;ii++) {
|
|
i = ilist[ii];
|
|
v[i][0] = v[i][0] + gdot*x[i][1];
|
|
omega[i][2] = omega[i][2] - gdot/2.0;
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------
|
|
Finds the position of the particles at half the time step
|
|
----------------------------------------------------------------*/
|
|
|
|
void PairLubricateU::intermediates(int nall, double **xl)
|
|
{
|
|
int i;
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double dtv = update->dt;
|
|
|
|
for (i=0;i<nall;i++) {
|
|
xl[i][0] = x[i][0] + 0.5*dtv*v[i][0];
|
|
xl[i][1] = x[i][1] + 0.5*dtv*v[i][1];
|
|
xl[i][2] = x[i][2] + 0.5*dtv*v[i][2];
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------
|
|
Stage one of midpoint method
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::stage_two(double **x)
|
|
{
|
|
int i,j,ii,inum;
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double **omega = atom->omega;
|
|
double **torque = atom->torque;
|
|
|
|
int newton_pair = force->newton_pair;
|
|
int *ilist;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
|
|
double alpha,beta;
|
|
double normi,error,normig;
|
|
double send[2],recv[2],rcg_dot_rcg;
|
|
|
|
// First compute R_FE*E
|
|
|
|
compute_RE(x);
|
|
|
|
// Reverse communication of forces and torques to
|
|
// accumulate the net force on each of the particles
|
|
|
|
if (newton_pair) comm->reverse_comm();
|
|
|
|
// CONJUGATE GRADIENT
|
|
// Find the right hand side= -ve of all forces/torques
|
|
// b = 6*Npart in overall size
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
for (j = 0; j < 3; j++) {
|
|
bcg[6*ii+j] = -f[i][j];
|
|
bcg[6*ii+j+3] = -torque[i][j];
|
|
}
|
|
}
|
|
|
|
// Start solving the equation : F^H = -F^P -F^B - F^H_{Ef}
|
|
// Store initial guess for velocity and angular-velocities/angular momentum
|
|
// NOTE velocities and angular velocities are assumed relative to the fluid
|
|
|
|
for (ii=0;ii<inum;ii++)
|
|
for (j=0;j<3;j++) {
|
|
xcg[6*ii+j] = 0.0;
|
|
xcg[6*ii+j+3] = 0.0;
|
|
}
|
|
|
|
// Copy initial guess to the global arrays to be acted upon by R_{FU}
|
|
// and returned by f and torque arrays
|
|
|
|
copy_vec_uo(inum,xcg,v,omega);
|
|
|
|
// set velocities for ghost particles
|
|
|
|
comm->forward_comm(this);
|
|
|
|
// Find initial residual
|
|
|
|
compute_RU(x);
|
|
|
|
// reverse communication of forces and torques
|
|
|
|
if (newton_pair) comm->reverse_comm();
|
|
|
|
copy_uo_vec(inum,f,torque,RU);
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
rcg[i] = bcg[i] - RU[i];
|
|
|
|
// Set initial conjugate direction
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
pcg[i] = rcg[i];
|
|
|
|
// Find initial norm of the residual or norm of the RHS (either is fine)
|
|
|
|
normi = dot_vec_vec(6*inum,bcg,bcg);
|
|
|
|
MPI_Allreduce(&normi,&normig,1,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// Loop until convergence
|
|
|
|
do {
|
|
// find R*p
|
|
|
|
copy_vec_uo(inum,pcg,v,omega);
|
|
|
|
// set velocities for ghost particles
|
|
|
|
comm->forward_comm(this);
|
|
|
|
compute_RU(x);
|
|
|
|
// reverse communication of forces and torques
|
|
|
|
if (newton_pair) comm->reverse_comm();
|
|
|
|
copy_uo_vec(inum,f,torque,RU);
|
|
|
|
// Find alpha
|
|
|
|
send[0] = dot_vec_vec(6*inum,rcg,rcg);
|
|
send[1] = dot_vec_vec(6*inum,RU,pcg);
|
|
|
|
MPI_Allreduce(send,recv,2,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
alpha = recv[0]/recv[1];
|
|
rcg_dot_rcg = recv[0];
|
|
|
|
// Find new x
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
xcg[i] = xcg[i] + alpha*pcg[i];
|
|
|
|
// find new residual
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
rcg1[i] = rcg[i] - alpha*RU[i];
|
|
|
|
// find beta
|
|
|
|
send[0] = dot_vec_vec(6*inum,rcg1,rcg1);
|
|
|
|
MPI_Allreduce(send,recv,1,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
beta = recv[0]/rcg_dot_rcg;
|
|
|
|
// Find new conjugate direction
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
pcg[i] = rcg1[i] + beta*pcg[i];
|
|
|
|
for (i=0;i<6*inum;i++)
|
|
rcg[i] = rcg1[i];
|
|
|
|
// Find relative error
|
|
|
|
error = sqrt(recv[0]/normig);
|
|
|
|
} while (error > TOL);
|
|
|
|
|
|
// update the final converged velocities in respective arrays
|
|
|
|
copy_vec_uo(inum,xcg,v,omega);
|
|
|
|
// set velocities for ghost particles
|
|
|
|
comm->forward_comm(this);
|
|
|
|
// Compute the viscosity/pressure
|
|
|
|
if (evflag) compute_Fh(x);
|
|
|
|
// Find actual particle's velocities from relative velocities
|
|
// Only non-zero component of fluid's vel : vx=gdot*y and wz=-gdot/2
|
|
|
|
for (ii=0;ii<inum;ii++) {
|
|
i = ilist[ii];
|
|
v[i][0] = v[i][0] + gdot*x[i][1];
|
|
omega[i][2] = omega[i][2] - gdot/2.0;
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------
|
|
This function computes the final hydrodynamic force once the
|
|
velocities have converged.
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::compute_Fh(double **x)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz;
|
|
double rsq,r,h_sep;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
|
|
double vt1,vt2,vt3;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double **omega = atom->omega;
|
|
double **torque = atom->torque;
|
|
double *radius = atom->radius;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int nghost = atom->nghost;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
double radi;
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
double vi[3],vj[3],wi[3],wj[3],xl[3],a_sq,a_sh;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
|
|
// in the volume fraction as a result of fix deform or moving walls
|
|
|
|
double dims[3], wallcoord;
|
|
if (flagVF) // Flag for volume fraction corrections
|
|
if (flagdeform || flagwall == 2) { // Possible changes in volume fraction
|
|
if (flagdeform && !flagwall)
|
|
for (j = 0; j < 3; j++)
|
|
dims[j] = domain->prd[j];
|
|
else if (flagwall == 2 || (flagdeform && flagwall == 1)) {
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++) {
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++) {
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == FixWall::VARIABLE) {
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
else wallcoord = wallfix->coord0[m];
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
for (int j = 0; j < 3; j++)
|
|
dims[j] = wallhi[j] - walllo[j];
|
|
}
|
|
double vol_T = dims[0]*dims[1]*dims[2];
|
|
double vol_f = vol_P/vol_T;
|
|
if (flaglog == 0) {
|
|
// R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
|
|
// RT0 = 8*MY_PI*mu*pow(rad,3);
|
|
RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3.0)*
|
|
(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
|
|
} else {
|
|
// R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
// RT0 = 8*MY_PI*mu*pow(rad,3)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3.0)*
|
|
(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
|
|
// end of R0 adjustment code
|
|
|
|
// Set force to zero which is the final value after this pair interaction
|
|
for (i=0;i<nlocal+nghost;i++)
|
|
for (j=0;j<3;j++) {
|
|
f[i][j] = 0.0;
|
|
torque[i][j] = 0.0;
|
|
}
|
|
|
|
// reverse communication of forces and torques
|
|
|
|
if (newton_pair) comm->reverse_comm(); // not really needed
|
|
|
|
// Find additional contribution from the stresslets
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// Find the contribution to stress from isotropic RS0
|
|
// Set pseudo force to obtain the required contribution
|
|
// need to set delx and fy only
|
|
|
|
fx = 0.0; delx = radi;
|
|
fy = vxmu2f*RS0*gdot/2.0/radi; dely = 0.0;
|
|
fz = 0.0; delz = 0.0;
|
|
if (evflag)
|
|
ev_tally_xyz(i,i,nlocal,newton_pair,0.0,0.0,-fx,-fy,-fz,delx,dely,delz);
|
|
|
|
// Find angular velocity
|
|
|
|
wi[0] = omega[i][0];
|
|
wi[1] = omega[i][1];
|
|
wi[2] = omega[i][2];
|
|
|
|
if (!flagHI) continue;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// Use omega directly if it exists, else angmom
|
|
// angular momentum = I*omega = 2/5 * M*R^2 * omega
|
|
|
|
wj[0] = omega[j][0];
|
|
wj[1] = omega[j][1];
|
|
wj[2] = omega[j][2];
|
|
|
|
// loc of the point of closest approach on particle i from its cente
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
|
|
// velocity at the point of closest approach on both particles
|
|
// v = v + omega_cross_xl
|
|
|
|
// particle i
|
|
|
|
vi[0] = v[i][0] + (wi[1]*xl[2] - wi[2]*xl[1]);
|
|
vi[1] = v[i][1] + (wi[2]*xl[0] - wi[0]*xl[2]);
|
|
vi[2] = v[i][2] + (wi[0]*xl[1] - wi[1]*xl[0]);
|
|
|
|
// particle j
|
|
|
|
vj[0] = v[j][0] - (wj[1]*xl[2] - wj[2]*xl[1]);
|
|
vj[1] = v[j][1] - (wj[2]*xl[0] - wj[0]*xl[2]);
|
|
vj[2] = v[j][2] - (wj[0]*xl[1] - wj[1]*xl[0]);
|
|
|
|
|
|
// Relative velocity at the point of closest approach
|
|
// include contribution from Einf of the fluid
|
|
|
|
vr1 = vi[0] - vj[0] -
|
|
2.0*(Ef[0][0]*xl[0] + Ef[0][1]*xl[1] + Ef[0][2]*xl[2]);
|
|
vr2 = vi[1] - vj[1] -
|
|
2.0*(Ef[1][0]*xl[0] + Ef[1][1]*xl[1] + Ef[1][2]*xl[2]);
|
|
vr3 = vi[2] - vj[2] -
|
|
2.0*(Ef[2][0]*xl[0] + Ef[2][1]*xl[1] + Ef[2][2]*xl[2]);
|
|
|
|
// Normal component (vr.n)n
|
|
|
|
vnnr = (vr1*delx + vr2*dely + vr3*delz)/r;
|
|
vn1 = vnnr*delx/r;
|
|
vn2 = vnnr*dely/r;
|
|
vn3 = vnnr*delz/r;
|
|
|
|
// Tangential component vr - (vr.n)n
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// Find the scalar resistances a_sq, a_sh and a_pu
|
|
|
|
h_sep = r - 2.0*radi;
|
|
|
|
// If less than the minimum gap use the minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - 2.0*radi;
|
|
|
|
// Scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
|
|
// Scalar resistances
|
|
|
|
if (flaglog) {
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1.0/h_sep));
|
|
a_sh = 6.0*MY_PI*mu*radi*(1.0/6.0*log(1.0/h_sep));
|
|
} else
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep);
|
|
|
|
// Find force due to squeeze type motion
|
|
|
|
fx = a_sq*vn1;
|
|
fy = a_sq*vn2;
|
|
fz = a_sq*vn3;
|
|
|
|
// Find force due to all shear kind of motions
|
|
|
|
if (flaglog) {
|
|
fx = fx + a_sh*vt1;
|
|
fy = fy + a_sh*vt2;
|
|
fz = fz + a_sh*vt3;
|
|
}
|
|
|
|
// Scale forces to obtain in appropriate units
|
|
|
|
fx = vxmu2f*fx;
|
|
fy = vxmu2f*fy;
|
|
fz = vxmu2f*fz;
|
|
|
|
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,
|
|
0.0,0.0,-fx,-fy,-fz,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
computes R_FU * U
|
|
---------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::compute_RU()
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
|
|
double rsq,r,h_sep,radi;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
|
|
double vt1,vt2,vt3,wdotn,wt1,wt2,wt3;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
double **x = atom->x;
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double **omega = atom->omega;
|
|
double **torque = atom->torque;
|
|
double *radius = atom->radius;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int nghost = atom->nghost;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
double vi[3],vj[3],wi[3],wj[3],xl[3],a_sq,a_sh,a_pu;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
|
|
// in the volume fraction as a result of fix deform or moving walls
|
|
|
|
double dims[3], wallcoord;
|
|
if (flagVF) // Flag for volume fraction corrections
|
|
if (flagdeform || flagwall == 2) { // Possible changes in volume fraction
|
|
if (flagdeform && !flagwall)
|
|
for (j = 0; j < 3; j++)
|
|
dims[j] = domain->prd[j];
|
|
else if (flagwall == 2 || (flagdeform && flagwall == 1)) {
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++) {
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++) {
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == FixWall::VARIABLE) {
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
else wallcoord = wallfix->coord0[m];
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
for (int j = 0; j < 3; j++)
|
|
dims[j] = wallhi[j] - walllo[j];
|
|
}
|
|
double vol_T = dims[0]*dims[1]*dims[2];
|
|
double vol_f = vol_P/vol_T;
|
|
if (flaglog == 0) {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
|
|
RT0 = 8*MY_PI*mu*pow(rad,3.0);
|
|
// RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
|
|
} else {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
RT0 = 8*MY_PI*mu*pow(rad,3.0)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
// RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
// end of R0 adjustment code
|
|
|
|
// Initialize f to zero
|
|
for (i=0;i<nlocal+nghost;i++)
|
|
for (j=0;j<3;j++) {
|
|
f[i][j] = 0.0;
|
|
torque[i][j] = 0.0;
|
|
}
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// Find angular velocity
|
|
|
|
wi[0] = omega[i][0];
|
|
wi[1] = omega[i][1];
|
|
wi[2] = omega[i][2];
|
|
|
|
// Contribution due to the isotropic terms
|
|
|
|
f[i][0] += -vxmu2f*R0*v[i][0];
|
|
f[i][1] += -vxmu2f*R0*v[i][1];
|
|
f[i][2] += -vxmu2f*R0*v[i][2];
|
|
|
|
torque[i][0] += -vxmu2f*RT0*wi[0];
|
|
torque[i][1] += -vxmu2f*RT0*wi[1];
|
|
torque[i][2] += -vxmu2f*RT0*wi[2];
|
|
|
|
if (!flagHI) continue;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// Use omega directly if it exists, else angmom
|
|
// angular momentum = I*omega = 2/5 * M*R^2 * omega
|
|
|
|
wj[0] = omega[j][0];
|
|
wj[1] = omega[j][1];
|
|
wj[2] = omega[j][2];
|
|
|
|
// loc of the point of closest approach on particle i from its center
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
|
|
// velocity at the point of closest approach on both particles
|
|
// v = v + omega_cross_xl
|
|
|
|
// particle i
|
|
|
|
vi[0] = v[i][0] + (wi[1]*xl[2] - wi[2]*xl[1]);
|
|
vi[1] = v[i][1] + (wi[2]*xl[0] - wi[0]*xl[2]);
|
|
vi[2] = v[i][2] + (wi[0]*xl[1] - wi[1]*xl[0]);
|
|
|
|
// particle j
|
|
|
|
vj[0] = v[j][0] - (wj[1]*xl[2] - wj[2]*xl[1]);
|
|
vj[1] = v[j][1] - (wj[2]*xl[0] - wj[0]*xl[2]);
|
|
vj[2] = v[j][2] - (wj[0]*xl[1] - wj[1]*xl[0]);
|
|
|
|
// Find the scalar resistances a_sq and a_sh
|
|
|
|
h_sep = r - 2.0*radi;
|
|
|
|
// If less than the minimum gap use the minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - 2.0*radi;
|
|
|
|
// Scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
|
|
// Scalar resistances
|
|
|
|
if (flaglog) {
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1.0/h_sep));
|
|
a_sh = 6.0*MY_PI*mu*radi*(1.0/6.0*log(1.0/h_sep));
|
|
a_pu = 8.0*MY_PI*mu*pow(radi,3.0)*(3.0/160.0*log(1.0/h_sep));
|
|
} else
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep);
|
|
|
|
// Relative velocity at the point of closest approach
|
|
|
|
vr1 = vi[0] - vj[0];
|
|
vr2 = vi[1] - vj[1];
|
|
vr3 = vi[2] - vj[2];
|
|
|
|
// Normal component (vr.n)n
|
|
|
|
vnnr = (vr1*delx + vr2*dely + vr3*delz)/r;
|
|
vn1 = vnnr*delx/r;
|
|
vn2 = vnnr*dely/r;
|
|
vn3 = vnnr*delz/r;
|
|
|
|
// Tangential component vr - (vr.n)n
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// Find force due to squeeze type motion
|
|
|
|
fx = a_sq*vn1;
|
|
fy = a_sq*vn2;
|
|
fz = a_sq*vn3;
|
|
|
|
// Find force due to all shear kind of motions
|
|
|
|
if (flaglog) {
|
|
fx = fx + a_sh*vt1;
|
|
fy = fy + a_sh*vt2;
|
|
fz = fz + a_sh*vt3;
|
|
}
|
|
|
|
// Scale forces to obtain in appropriate units
|
|
|
|
fx = vxmu2f*fx;
|
|
fy = vxmu2f*fy;
|
|
fz = vxmu2f*fz;
|
|
|
|
// Add to the total force
|
|
|
|
f[i][0] -= fx;
|
|
f[i][1] -= fy;
|
|
f[i][2] -= fz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] += fx;
|
|
f[j][1] += fy;
|
|
f[j][2] += fz;
|
|
}
|
|
|
|
// Find torque due to this force
|
|
|
|
if (flaglog) {
|
|
tx = xl[1]*fz - xl[2]*fy;
|
|
ty = xl[2]*fx - xl[0]*fz;
|
|
tz = xl[0]*fy - xl[1]*fx;
|
|
|
|
// Why a scale factor ?
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] -= vxmu2f*tx;
|
|
torque[j][1] -= vxmu2f*ty;
|
|
torque[j][2] -= vxmu2f*tz;
|
|
}
|
|
|
|
// Torque due to a_pu
|
|
|
|
wdotn = ((wi[0]-wj[0])*delx +
|
|
(wi[1]-wj[1])*dely + (wi[2]-wj[2])*delz)/r;
|
|
wt1 = (wi[0]-wj[0]) - wdotn*delx/r;
|
|
wt2 = (wi[1]-wj[1]) - wdotn*dely/r;
|
|
wt3 = (wi[2]-wj[2]) - wdotn*delz/r;
|
|
|
|
tx = a_pu*wt1;
|
|
ty = a_pu*wt2;
|
|
tz = a_pu*wt3;
|
|
|
|
// add to total
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] += vxmu2f*tx;
|
|
torque[j][1] += vxmu2f*ty;
|
|
torque[j][2] += vxmu2f*tz;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
computes R_FU * U
|
|
---------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::compute_RU(double **x)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
|
|
double rsq,r,h_sep,radi;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
|
|
double vt1,vt2,vt3,wdotn,wt1,wt2,wt3;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double **omega = atom->omega;
|
|
double **torque = atom->torque;
|
|
double *radius = atom->radius;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int nghost = atom->nghost;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
double vi[3],vj[3],wi[3],wj[3],xl[3],a_sq,a_sh,a_pu;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
|
|
// in the volume fraction as a result of fix deform or moving walls
|
|
|
|
double dims[3], wallcoord;
|
|
if (flagVF) // Flag for volume fraction corrections
|
|
if (flagdeform || flagwall == 2) { // Possible changes in volume fraction
|
|
if (flagdeform && !flagwall)
|
|
for (j = 0; j < 3; j++)
|
|
dims[j] = domain->prd[j];
|
|
else if (flagwall == 2 || (flagdeform && flagwall == 1)) {
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++) {
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++) {
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == FixWall::VARIABLE) {
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
else wallcoord = wallfix->coord0[m];
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
for (int j = 0; j < 3; j++)
|
|
dims[j] = wallhi[j] - walllo[j];
|
|
}
|
|
double vol_T = dims[0]*dims[1]*dims[2];
|
|
double vol_f = vol_P/vol_T;
|
|
if (flaglog == 0) {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
|
|
RT0 = 8*MY_PI*mu*pow(rad,3.0);
|
|
// RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
|
|
} else {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
RT0 = 8*MY_PI*mu*pow(rad,3.0)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
// RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
// end of R0 adjustment code
|
|
|
|
// Initialize f to zero
|
|
for (i=0;i<nlocal+nghost;i++)
|
|
for (j=0;j<3;j++) {
|
|
f[i][j] = 0.0;
|
|
torque[i][j] = 0.0;
|
|
}
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// Find angular velocity
|
|
|
|
wi[0] = omega[i][0];
|
|
wi[1] = omega[i][1];
|
|
wi[2] = omega[i][2];
|
|
|
|
// Contribution due to the isotropic terms
|
|
|
|
f[i][0] += -vxmu2f*R0*v[i][0];
|
|
f[i][1] += -vxmu2f*R0*v[i][1];
|
|
f[i][2] += -vxmu2f*R0*v[i][2];
|
|
|
|
torque[i][0] += -vxmu2f*RT0*wi[0];
|
|
torque[i][1] += -vxmu2f*RT0*wi[1];
|
|
torque[i][2] += -vxmu2f*RT0*wi[2];
|
|
|
|
if (!flagHI) continue;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// Use omega directly if it exists, else angmom
|
|
// angular momentum = I*omega = 2/5 * M*R^2 * omega
|
|
|
|
wj[0] = omega[j][0];
|
|
wj[1] = omega[j][1];
|
|
wj[2] = omega[j][2];
|
|
|
|
// loc of the point of closest approach on particle i from its center
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
|
|
// velocity at the point of closest approach on both particles
|
|
// v = v + omega_cross_xl
|
|
|
|
// particle i
|
|
|
|
vi[0] = v[i][0] + (wi[1]*xl[2] - wi[2]*xl[1]);
|
|
vi[1] = v[i][1] + (wi[2]*xl[0] - wi[0]*xl[2]);
|
|
vi[2] = v[i][2] + (wi[0]*xl[1] - wi[1]*xl[0]);
|
|
|
|
// particle j
|
|
|
|
vj[0] = v[j][0] - (wj[1]*xl[2] - wj[2]*xl[1]);
|
|
vj[1] = v[j][1] - (wj[2]*xl[0] - wj[0]*xl[2]);
|
|
vj[2] = v[j][2] - (wj[0]*xl[1] - wj[1]*xl[0]);
|
|
|
|
// Find the scalar resistances a_sq and a_sh
|
|
|
|
h_sep = r - 2.0*radi;
|
|
|
|
// If less than the minimum gap use the minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - 2.0*radi;
|
|
|
|
// Scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
|
|
// Scalar resistances
|
|
|
|
if (flaglog) {
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1.0/h_sep));
|
|
a_sh = 6.0*MY_PI*mu*radi*(1.0/6.0*log(1.0/h_sep));
|
|
a_pu = 8.0*MY_PI*mu*pow(radi,3.0)*(3.0/160.0*log(1.0/h_sep));
|
|
} else
|
|
a_sq = 6.0*MY_PI*mu*radi*(1.0/4.0/h_sep);
|
|
|
|
// Relative velocity at the point of closest approach
|
|
|
|
vr1 = vi[0] - vj[0];
|
|
vr2 = vi[1] - vj[1];
|
|
vr3 = vi[2] - vj[2];
|
|
|
|
// Normal component (vr.n)n
|
|
|
|
vnnr = (vr1*delx + vr2*dely + vr3*delz)/r;
|
|
vn1 = vnnr*delx/r;
|
|
vn2 = vnnr*dely/r;
|
|
vn3 = vnnr*delz/r;
|
|
|
|
// Tangential component vr - (vr.n)n
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// Find force due to squeeze type motion
|
|
|
|
fx = a_sq*vn1;
|
|
fy = a_sq*vn2;
|
|
fz = a_sq*vn3;
|
|
|
|
// Find force due to all shear kind of motions
|
|
|
|
if (flaglog) {
|
|
fx = fx + a_sh*vt1;
|
|
fy = fy + a_sh*vt2;
|
|
fz = fz + a_sh*vt3;
|
|
}
|
|
|
|
// Scale forces to obtain in appropriate units
|
|
|
|
fx = vxmu2f*fx;
|
|
fy = vxmu2f*fy;
|
|
fz = vxmu2f*fz;
|
|
|
|
// Add to the total force
|
|
|
|
f[i][0] -= fx;
|
|
f[i][1] -= fy;
|
|
f[i][2] -= fz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] += fx;
|
|
f[j][1] += fy;
|
|
f[j][2] += fz;
|
|
}
|
|
|
|
// Find torque due to this force
|
|
|
|
if (flaglog) {
|
|
tx = xl[1]*fz - xl[2]*fy;
|
|
ty = xl[2]*fx - xl[0]*fz;
|
|
tz = xl[0]*fy - xl[1]*fx;
|
|
|
|
// Why a scale factor ?
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] -= vxmu2f*tx;
|
|
torque[j][1] -= vxmu2f*ty;
|
|
torque[j][2] -= vxmu2f*tz;
|
|
}
|
|
|
|
// Torque due to a_pu
|
|
|
|
wdotn = ((wi[0]-wj[0])*delx +
|
|
(wi[1]-wj[1])*dely + (wi[2]-wj[2])*delz)/r;
|
|
wt1 = (wi[0]-wj[0]) - wdotn*delx/r;
|
|
wt2 = (wi[1]-wj[1]) - wdotn*dely/r;
|
|
wt3 = (wi[2]-wj[2]) - wdotn*delz/r;
|
|
|
|
tx = a_pu*wt1;
|
|
ty = a_pu*wt2;
|
|
tz = a_pu*wt3;
|
|
|
|
// add to total
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] += vxmu2f*tx;
|
|
torque[j][1] += vxmu2f*ty;
|
|
torque[j][2] += vxmu2f*tz;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
This computes R_{FE}*E , where E is the rate of strain of tensor which is
|
|
known apriori, as it depends only on the known fluid velocity.
|
|
So, this part of the hydrodynamic interaction can be pre computed and
|
|
transferred to the RHS
|
|
---------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::compute_RE()
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
|
|
double rsq,r,h_sep,radi;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
|
|
double vt1,vt2,vt3;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
double **torque = atom->torque;
|
|
double *radius = atom->radius;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
double xl[3],a_sq,a_sh;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
if (!flagHI) return;
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// No contribution from isotropic terms due to E
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// loc of the point of closest approach on particle i from its center
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
|
|
// Find the scalar resistances a_sq and a_sh
|
|
|
|
h_sep = r - 2.0*radi;
|
|
|
|
// If less than the minimum gap use the minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - 2.0*radi;
|
|
|
|
// Scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
|
|
// Scalar resistance for Squeeze type motions
|
|
|
|
if (flaglog)
|
|
a_sq = 6*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1/h_sep));
|
|
else
|
|
a_sq = 6*MY_PI*mu*radi*(1.0/4.0/h_sep);
|
|
|
|
// Scalar resistance for Shear type motions
|
|
|
|
if (flaglog) {
|
|
a_sh = 6*MY_PI*mu*radi*(1.0/6.0*log(1/h_sep));
|
|
}
|
|
|
|
// Relative velocity at the point of closest approach due to Ef only
|
|
|
|
vr1 = -2.0*(Ef[0][0]*xl[0] + Ef[0][1]*xl[1] + Ef[0][2]*xl[2]);
|
|
vr2 = -2.0*(Ef[1][0]*xl[0] + Ef[1][1]*xl[1] + Ef[1][2]*xl[2]);
|
|
vr3 = -2.0*(Ef[2][0]*xl[0] + Ef[2][1]*xl[1] + Ef[2][2]*xl[2]);
|
|
|
|
// Normal component (vr.n)n
|
|
|
|
vnnr = (vr1*delx + vr2*dely + vr3*delz)/r;
|
|
vn1 = vnnr*delx/r;
|
|
vn2 = vnnr*dely/r;
|
|
vn3 = vnnr*delz/r;
|
|
|
|
// Tangential component vr - (vr.n)n
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// Find force due to squeeze type motion
|
|
|
|
fx = a_sq*vn1;
|
|
fy = a_sq*vn2;
|
|
fz = a_sq*vn3;
|
|
|
|
// Find force due to all shear kind of motions
|
|
|
|
if (flaglog) {
|
|
fx = fx + a_sh*vt1;
|
|
fy = fy + a_sh*vt2;
|
|
fz = fz + a_sh*vt3;
|
|
}
|
|
|
|
// Scale forces to obtain in appropriate units
|
|
|
|
fx = vxmu2f*fx;
|
|
fy = vxmu2f*fy;
|
|
fz = vxmu2f*fz;
|
|
|
|
// Add to the total force
|
|
|
|
f[i][0] -= fx;
|
|
f[i][1] -= fy;
|
|
f[i][2] -= fz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] += fx;
|
|
f[j][1] += fy;
|
|
f[j][2] += fz;
|
|
}
|
|
|
|
// Find torque due to this force
|
|
|
|
if (flaglog) {
|
|
tx = xl[1]*fz - xl[2]*fy;
|
|
ty = xl[2]*fx - xl[0]*fz;
|
|
tz = xl[0]*fy - xl[1]*fx;
|
|
|
|
// Why a scale factor ?
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] -= vxmu2f*tx;
|
|
torque[j][1] -= vxmu2f*ty;
|
|
torque[j][2] -= vxmu2f*tz;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
This computes R_{FE}*E , where E is the rate of strain of tensor which is
|
|
known apriori, as it depends only on the known fluid velocity.
|
|
So, this part of the hydrodynamic interaction can be pre computed and
|
|
transferred to the RHS
|
|
---------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::compute_RE(double **x)
|
|
{
|
|
int i,j,ii,jj,inum,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
|
|
double rsq,r,h_sep,radi;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
|
|
double vt1,vt2,vt3;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
double **f = atom->f;
|
|
double **torque = atom->torque;
|
|
double *radius = atom->radius;
|
|
int *type = atom->type;
|
|
int nlocal = atom->nlocal;
|
|
int newton_pair = force->newton_pair;
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
double xl[3],a_sq,a_sh;
|
|
|
|
if (!flagHI) return;
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// No contribution from isotropic terms due to E
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// loc of the point of closest approach on particle i from its center
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
|
|
// Find the scalar resistances a_sq and a_sh
|
|
|
|
h_sep = r - 2.0*radi;
|
|
|
|
// If less than the minimum gap use the minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - 2.0*radi;
|
|
|
|
// Scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
|
|
// Scalar resistance for Squeeze type motions
|
|
|
|
if (flaglog)
|
|
a_sq = 6*MY_PI*mu*radi*(1.0/4.0/h_sep + 9.0/40.0*log(1/h_sep));
|
|
else
|
|
a_sq = 6*MY_PI*mu*radi*(1.0/4.0/h_sep);
|
|
|
|
// Scalar resistance for Shear type motions
|
|
|
|
if (flaglog) {
|
|
a_sh = 6*MY_PI*mu*radi*(1.0/6.0*log(1/h_sep));
|
|
}
|
|
|
|
// Relative velocity at the point of closest approach due to Ef only
|
|
|
|
vr1 = -2.0*(Ef[0][0]*xl[0] + Ef[0][1]*xl[1] + Ef[0][2]*xl[2]);
|
|
vr2 = -2.0*(Ef[1][0]*xl[0] + Ef[1][1]*xl[1] + Ef[1][2]*xl[2]);
|
|
vr3 = -2.0*(Ef[2][0]*xl[0] + Ef[2][1]*xl[1] + Ef[2][2]*xl[2]);
|
|
|
|
// Normal component (vr.n)n
|
|
|
|
vnnr = (vr1*delx + vr2*dely + vr3*delz)/r;
|
|
vn1 = vnnr*delx/r;
|
|
vn2 = vnnr*dely/r;
|
|
vn3 = vnnr*delz/r;
|
|
|
|
// Tangential component vr - (vr.n)n
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// Find force due to squeeze type motion
|
|
|
|
fx = a_sq*vn1;
|
|
fy = a_sq*vn2;
|
|
fz = a_sq*vn3;
|
|
|
|
// Find force due to all shear kind of motions
|
|
|
|
if (flaglog) {
|
|
fx = fx + a_sh*vt1;
|
|
fy = fy + a_sh*vt2;
|
|
fz = fz + a_sh*vt3;
|
|
}
|
|
|
|
// Scale forces to obtain in appropriate units
|
|
|
|
fx = vxmu2f*fx;
|
|
fy = vxmu2f*fy;
|
|
fz = vxmu2f*fz;
|
|
|
|
// Add to the total force
|
|
|
|
f[i][0] -= fx;
|
|
f[i][1] -= fy;
|
|
f[i][2] -= fz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
f[j][0] += fx;
|
|
f[j][1] += fy;
|
|
f[j][2] += fz;
|
|
}
|
|
|
|
// Find torque due to this force
|
|
|
|
if (flaglog) {
|
|
tx = xl[1]*fz - xl[2]*fy;
|
|
ty = xl[2]*fx - xl[0]*fz;
|
|
tz = xl[0]*fy - xl[1]*fx;
|
|
|
|
// Why a scale factor ?
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
if (newton_pair || j < nlocal) {
|
|
torque[j][0] -= vxmu2f*tx;
|
|
torque[j][1] -= vxmu2f*ty;
|
|
torque[j][2] -= vxmu2f*tz;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
allocate all arrays
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->ntypes;
|
|
|
|
setflag = memory->create(setflag,n+1,n+1,"pair:setflag");
|
|
for (int i = 1; i <= n; i++)
|
|
for (int j = i; j <= n; j++)
|
|
setflag[i][j] = 0;
|
|
|
|
cutsq = memory->create(cutsq,n+1,n+1,"pair:cutsq");
|
|
|
|
memory->create(cut,n+1,n+1,"pair:cut");
|
|
memory->create(cut_inner,n+1,n+1,"pair:cut_inner");
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------
|
|
global settings
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::settings(int narg, char **arg)
|
|
{
|
|
if (narg != 5 && narg != 7) error->all(FLERR,"Illegal pair_style command");
|
|
|
|
mu = utils::numeric(FLERR,arg[0],false,lmp);
|
|
flaglog = utils::inumeric(FLERR,arg[1],false,lmp);
|
|
cut_inner_global = utils::numeric(FLERR,arg[2],false,lmp);
|
|
cut_global = utils::numeric(FLERR,arg[3],false,lmp);
|
|
gdot = utils::numeric(FLERR,arg[4],false,lmp);
|
|
|
|
flagHI = flagVF = 1;
|
|
if (narg == 7) {
|
|
flagHI = utils::inumeric(FLERR,arg[5],false,lmp);
|
|
flagVF = utils::inumeric(FLERR,arg[6],false,lmp);
|
|
}
|
|
|
|
if (flaglog == 1 && flagHI == 0) {
|
|
error->warning(FLERR,"Cannot include log terms without 1/r terms; "
|
|
"setting flagHI to 1.");
|
|
flagHI = 1;
|
|
}
|
|
|
|
// reset cutoffs that have been explicitly set
|
|
|
|
if (allocated) {
|
|
int i,j;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++)
|
|
if (setflag[i][j]) {
|
|
cut_inner[i][j] = cut_inner_global;
|
|
cut[i][j] = cut_global;
|
|
}
|
|
}
|
|
|
|
// store the rate of strain tensor
|
|
|
|
Ef[0][0] = 0.0;
|
|
Ef[0][1] = 0.5*gdot;
|
|
Ef[0][2] = 0.0;
|
|
Ef[1][0] = 0.5*gdot;
|
|
Ef[1][1] = 0.0;
|
|
Ef[1][2] = 0.0;
|
|
Ef[2][0] = 0.0;
|
|
Ef[2][1] = 0.0;
|
|
Ef[2][2] = 0.0;
|
|
}
|
|
|
|
/*-----------------------------------------------------------------------
|
|
set coeffs for one or more type pairs
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 2 && narg != 4)
|
|
error->all(FLERR,"Incorrect args for pair coefficients");
|
|
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi,jlo,jhi;
|
|
utils::bounds(FLERR,arg[0],1,atom->ntypes,ilo,ihi,error);
|
|
utils::bounds(FLERR,arg[1],1,atom->ntypes,jlo,jhi,error);
|
|
|
|
double cut_inner_one = cut_inner_global;
|
|
double cut_one = cut_global;
|
|
if (narg == 4) {
|
|
cut_inner_one = utils::numeric(FLERR,arg[2],false,lmp);
|
|
cut_one = utils::numeric(FLERR,arg[3],false,lmp);
|
|
}
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
for (int j = MAX(jlo,i); j <= jhi; j++) {
|
|
cut_inner[i][j] = cut_inner_one;
|
|
cut[i][j] = cut_one;
|
|
setflag[i][j] = 1;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init specific to this pair style
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::init_style()
|
|
{
|
|
if (!atom->sphere_flag)
|
|
error->all(FLERR,"Pair lubricateU requires atom style sphere");
|
|
if (comm->ghost_velocity == 0)
|
|
error->all(FLERR,"Pair lubricateU requires ghost atoms store velocity");
|
|
|
|
neighbor->add_request(this);
|
|
|
|
// require that atom radii are identical within each type
|
|
// require monodisperse system with same radii for all types
|
|
|
|
double radtype;
|
|
for (int i = 1; i <= atom->ntypes; i++) {
|
|
if (!atom->radius_consistency(i,radtype))
|
|
error->all(FLERR,"Pair lubricateU requires monodisperse particles");
|
|
if (i > 1 && radtype != rad)
|
|
error->all(FLERR,"Pair lubricateU requires monodisperse particles");
|
|
}
|
|
|
|
// check for fix deform, if exists it must use "remap v"
|
|
// If box will change volume, set appropriate flag so that volume
|
|
// and v.f. corrections are re-calculated at every step.
|
|
//
|
|
// If available volume is different from box volume
|
|
// due to walls, set volume appropriately; if walls will
|
|
// move, set appropriate flag so that volume and v.f. corrections
|
|
// are re-calculated at every step.
|
|
|
|
flagdeform = flagwall = 0;
|
|
for (int i = 0; i < modify->nfix; i++) {
|
|
if (strcmp(modify->fix[i]->style,"deform") == 0)
|
|
flagdeform = 1;
|
|
else if (strstr(modify->fix[i]->style,"wall") != nullptr) {
|
|
if (flagwall)
|
|
error->all(FLERR,
|
|
"Cannot use multiple fix wall commands with "
|
|
"pair lubricateU");
|
|
flagwall = 1; // Walls exist
|
|
wallfix = dynamic_cast<FixWall *>(modify->fix[i]);
|
|
if (wallfix->xflag) flagwall = 2; // Moving walls exist
|
|
}
|
|
}
|
|
|
|
// set the isotropic constants depending on the volume fraction
|
|
// vol_T = total volumeshearing = flagdeform = flagwall = 0;
|
|
double vol_T, wallcoord;
|
|
if (!flagwall) vol_T = domain->xprd*domain->yprd*domain->zprd;
|
|
else {
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++) {
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++) {
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == FixWall::VARIABLE) {
|
|
wallfix->xindex[m] = input->variable->find(wallfix->xstr[m]);
|
|
//Since fix->wall->init happens after pair->init_style
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
|
|
else wallcoord = wallfix->coord0[m];
|
|
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
vol_T = (wallhi[0] - walllo[0]) * (wallhi[1] - walllo[1]) *
|
|
(wallhi[2] - walllo[2]);
|
|
}
|
|
|
|
|
|
// assuming monodisperse spheres, vol_P = volume of the particles
|
|
|
|
double tmp = 0.0;
|
|
if (atom->radius) tmp = atom->radius[0];
|
|
MPI_Allreduce(&tmp,&rad,1,MPI_DOUBLE,MPI_MAX,world);
|
|
|
|
vol_P = atom->natoms * (4.0/3.0)*MY_PI*pow(rad,3.0);
|
|
|
|
// vol_f = volume fraction
|
|
|
|
double vol_f = vol_P/vol_T;
|
|
|
|
if (!flagVF) vol_f = 0;
|
|
|
|
// set the isotropic constant
|
|
|
|
if (flaglog == 0) {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
|
|
RT0 = 8*MY_PI*mu*pow(rad,3.0); // not actually needed
|
|
RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3.0)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
|
|
} else {
|
|
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
RT0 = 8*MY_PI*mu*pow(rad,3.0)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3.0)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init for one type pair i,j and corresponding j,i
|
|
------------------------------------------------------------------------- */
|
|
|
|
double PairLubricateU::init_one(int i, int j)
|
|
{
|
|
if (setflag[i][j] == 0) {
|
|
cut_inner[i][j] = mix_distance(cut_inner[i][i],cut_inner[j][j]);
|
|
cut[i][j] = mix_distance(cut[i][i],cut[j][j]);
|
|
}
|
|
|
|
cut_inner[j][i] = cut_inner[i][j];
|
|
|
|
return cut[i][j];
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::write_restart(FILE *fp)
|
|
{
|
|
write_restart_settings(fp);
|
|
|
|
int i,j;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
fwrite(&setflag[i][j],sizeof(int),1,fp);
|
|
if (setflag[i][j]) {
|
|
fwrite(&cut_inner[i][j],sizeof(double),1,fp);
|
|
fwrite(&cut[i][j],sizeof(double),1,fp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::read_restart(FILE *fp)
|
|
{
|
|
read_restart_settings(fp);
|
|
allocate();
|
|
|
|
int i,j;
|
|
int me = comm->me;
|
|
for (i = 1; i <= atom->ntypes; i++)
|
|
for (j = i; j <= atom->ntypes; j++) {
|
|
if (me == 0) utils::sfread(FLERR,&setflag[i][j],sizeof(int),1,fp,nullptr,error);
|
|
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
|
|
if (setflag[i][j]) {
|
|
if (me == 0) {
|
|
utils::sfread(FLERR,&cut_inner[i][j],sizeof(double),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&cut[i][j],sizeof(double),1,fp,nullptr,error);
|
|
}
|
|
MPI_Bcast(&cut_inner[i][j],1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::write_restart_settings(FILE *fp)
|
|
{
|
|
fwrite(&mu,sizeof(double),1,fp);
|
|
fwrite(&flaglog,sizeof(int),1,fp);
|
|
fwrite(&cut_inner_global,sizeof(double),1,fp);
|
|
fwrite(&cut_global,sizeof(double),1,fp);
|
|
fwrite(&offset_flag,sizeof(int),1,fp);
|
|
fwrite(&mix_flag,sizeof(int),1,fp);
|
|
fwrite(&flagHI,sizeof(int),1,fp);
|
|
fwrite(&flagVF,sizeof(int),1,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::read_restart_settings(FILE *fp)
|
|
{
|
|
int me = comm->me;
|
|
if (me == 0) {
|
|
utils::sfread(FLERR,&mu,sizeof(double),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&flaglog,sizeof(int),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&cut_inner_global,sizeof(double),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&cut_global,sizeof(double),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&offset_flag,sizeof(int),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&mix_flag,sizeof(int),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&flagHI,sizeof(int),1,fp,nullptr,error);
|
|
utils::sfread(FLERR,&flagVF,sizeof(int),1,fp,nullptr,error);
|
|
}
|
|
MPI_Bcast(&mu,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&flaglog,1,MPI_INT,0,world);
|
|
MPI_Bcast(&cut_inner_global,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
|
|
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
|
|
MPI_Bcast(&flagHI,1,MPI_INT,0,world);
|
|
MPI_Bcast(&flagVF,1,MPI_INT,0,world);
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
void PairLubricateU::copy_vec_uo(int inum, double *xcg,
|
|
double **v, double **omega)
|
|
{
|
|
int i,j,ii;
|
|
int *ilist = list->ilist;
|
|
|
|
for (ii=0;ii<inum;ii++) {
|
|
i = ilist[ii];
|
|
|
|
for (j=0;j<3;j++) {
|
|
v[i][j] = xcg[6*ii+j];
|
|
omega[i][j] = xcg[6*ii+j+3];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*---------------------------------------------------------------------------*/
|
|
|
|
void PairLubricateU::copy_uo_vec(int inum, double **f, double **torque,
|
|
double *RU)
|
|
{
|
|
int i,j,ii;
|
|
int *ilist;
|
|
|
|
ilist = list->ilist;
|
|
|
|
for (ii=0;ii<inum;ii++) {
|
|
i = ilist[ii];
|
|
for (j=0;j<3;j++) {
|
|
RU[6*ii+j] = f[i][j];
|
|
RU[6*ii+j+3] = torque[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
int PairLubricateU::pack_forward_comm(int n, int *list, double *buf,
|
|
int /*pbc_flag*/, int * /*pbc*/)
|
|
{
|
|
int i,j,m;
|
|
|
|
double **v = atom->v;
|
|
double **omega = atom->omega;
|
|
|
|
m = 0;
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
buf[m++] = v[j][0];
|
|
buf[m++] = v[j][1];
|
|
buf[m++] = v[j][2];
|
|
buf[m++] = omega[j][0];
|
|
buf[m++] = omega[j][1];
|
|
buf[m++] = omega[j][2];
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairLubricateU::unpack_forward_comm(int n, int first, double *buf)
|
|
{
|
|
int i,m,last;
|
|
|
|
double **v = atom->v;
|
|
double **omega = atom->omega;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; i++) {
|
|
v[i][0] = buf[m++];
|
|
v[i][1] = buf[m++];
|
|
v[i][2] = buf[m++];
|
|
omega[i][0] = buf[m++];
|
|
omega[i][1] = buf[m++];
|
|
omega[i][2] = buf[m++];
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairLubricateU::dot_vec_vec(int N, double *x, double *y)
|
|
{
|
|
double dotp=0.0;
|
|
for (int i = 0; i < N; i++) dotp += x[i]*y[i];
|
|
return dotp;
|
|
}
|