Files
lammps/lib/kokkos/core/src/Kokkos_MathematicalSpecialFunctions.hpp
2023-11-21 15:02:12 -07:00

1262 lines
46 KiB
C++

//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#ifndef KOKKOS_MATHEMATICAL_SPECIAL_FUNCTIONS_HPP
#define KOKKOS_MATHEMATICAL_SPECIAL_FUNCTIONS_HPP
#ifndef KOKKOS_IMPL_PUBLIC_INCLUDE
#define KOKKOS_IMPL_PUBLIC_INCLUDE
#define KOKKOS_IMPL_PUBLIC_INCLUDE_NOTDEFINED_MATHSPECFUNCTIONS
#endif
#include <Kokkos_Macros.hpp>
#include <cmath>
#include <algorithm>
#include <type_traits>
#include <Kokkos_MathematicalConstants.hpp>
#include <Kokkos_MathematicalFunctions.hpp>
#include <Kokkos_NumericTraits.hpp>
#include <Kokkos_Complex.hpp>
namespace Kokkos {
namespace Experimental {
//! Compute exponential integral E1(x) (x > 0).
template <class RealType>
KOKKOS_INLINE_FUNCTION RealType expint1(RealType x) {
// This function is a conversion of the corresponding Fortran program in
// S. Zhang & J. Jin "Computation of Special Functions" (Wiley, 1996).
using Kokkos::exp;
using Kokkos::fabs;
using Kokkos::log;
using Kokkos::pow;
using Kokkos::Experimental::epsilon;
using Kokkos::Experimental::infinity;
RealType e1;
if (x < 0) {
e1 = -infinity<RealType>::value;
} else if (x == 0.0) {
e1 = infinity<RealType>::value;
} else if (x <= 1.0) {
e1 = 1.0;
RealType r = 1.0;
for (int k = 1; k <= 25; k++) {
RealType k_real = static_cast<RealType>(k);
r = -r * k_real * x / pow(k_real + 1.0, 2.0);
e1 = e1 + r;
if (fabs(r) <= fabs(e1) * epsilon<RealType>::value) break;
}
e1 = -0.5772156649015328 - log(x) + x * e1;
} else {
int m = 20 + static_cast<int>(80.0 / x);
RealType t0 = 0.0;
for (int k = m; k >= 1; k--) {
RealType k_real = static_cast<RealType>(k);
t0 = k_real / (1.0 + k_real / (x + t0));
}
e1 = exp(-x) * (1.0 / (x + t0));
}
return e1;
}
//! Compute error function erf(z) for z=cmplx(x,y).
template <class RealType>
KOKKOS_INLINE_FUNCTION Kokkos::complex<RealType> erf(
const Kokkos::complex<RealType>& z) {
// This function is a conversion of the corresponding Fortran program written
// by D.E. Amos, May,1974. D.E. Amos' revisions of Jan 86 incorporated by
// Ken Damrau on 27-Jan-1986 14:37:13
//
// Reference: NBS HANDBOOK OF MATHEMATICAL FUNCTIONS, AMS 55, By
// M. ABRAMOWITZ AND I.A. STEGUN, December,1955.
// Summary:
// If x < 0, z is replaced by -z and all computation is done in the right
// half lane, except for z inside the circle abs(z)<=2, since
// erf(-z)=-erf(z). The regions for computation are divided as follows
// (1) abs(z)<=2 - Power series, NBS Handbook, p. 298
// (2) abs(z)>2 and x>1 - continued fraction, NBS Handbook, p. 298
// (3) abs(z)>2 and 0<=x<=1 and abs(y)<6 - series, NBS Handbook, p. 299
// (4) abs(z)>2 and 0<=x<=1 and abs(y)>=6 - asymptotic expansion
// Error condition: abs(z^2) > 670 is a fatal overflow error
using Kokkos::cos;
using Kokkos::exp;
using Kokkos::fabs;
using Kokkos::sin;
using Kokkos::Experimental::epsilon_v;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::pi_v;
using CmplxType = Kokkos::complex<RealType>;
constexpr auto inf = infinity_v<RealType>;
constexpr auto tol = epsilon_v<RealType>;
const RealType fnorm = 1.12837916709551;
const RealType gnorm = 0.564189583547756;
const RealType eh = 0.606530659712633;
const RealType ef = 0.778800783071405;
// const RealType tol = 1.0e-13;
constexpr auto pi = pi_v<RealType>;
CmplxType cans;
RealType az = Kokkos::abs(z);
if (az <= 2.0) { // Series for abs(z)<=2.0
CmplxType cz = z * z;
CmplxType accum = CmplxType(1.0, 0.0);
CmplxType term = accum;
RealType ak = 1.5;
for (int i = 1; i <= 35; i++) {
term = term * cz / ak;
accum = accum + term;
if (Kokkos::abs(term) <= tol) break;
ak = ak + 1.0;
}
cz = -cz;
RealType er = cz.real();
RealType ei = cz.imag();
accum = accum * z * fnorm;
cz = exp(er) * CmplxType(cos(ei), sin(ei));
cans = accum * cz;
} // end (az <= 2.0)
else { //(az > 2.0)
CmplxType zp = z;
if (z.real() < 0.0) zp = -z;
CmplxType cz = zp * zp;
RealType xp = zp.real();
RealType yp = zp.imag();
if (xp > 1.0) {
// continued fraction for erfc(z), abs(Z)>2
int n = static_cast<int>(100.0 / az + 5.0);
int fn = n;
CmplxType term = cz;
for (int i = 1; i <= n; i++) {
RealType fnh = fn - 0.5;
term = cz + (fnh * term) / (fn + term);
fn = fn - 1;
}
if (Kokkos::abs(cz) > 670.0) return CmplxType(inf, inf);
cz = -cz;
RealType er = cz.real();
RealType ei = cz.imag();
cz = exp(er) * CmplxType(cos(ei), sin(ei));
CmplxType accum = zp * gnorm * cz;
cans = 1.0 - accum / term;
if (z.real() < 0.0) cans = -cans;
} // end (xp > 1.0)
else { //(xp <= 1.0)
if (fabs(yp) <
6.0) { // Series (3) for abs(z)>2 and 0<=xp<=1 and abs(yp)<6
RealType s1 = 0.0;
RealType s2 = 0.0;
RealType x2 = xp * xp;
RealType fx2 = 4.0 * x2;
RealType tx = xp + xp;
RealType xy = xp * yp;
RealType sxyh = sin(xy);
RealType sxy = sin(xy + xy);
RealType cxy = cos(xy + xy);
RealType fn = 1.0;
RealType fnh = 0.5;
RealType ey = exp(yp);
RealType en = ey;
RealType ehn = eh;
RealType un = ef;
RealType vn = 1.0;
for (int i = 1; i <= 50; i++) {
RealType ren = 1.0 / en;
RealType csh = en + ren;
RealType tm = xp * csh;
RealType ssh = en - ren;
RealType tmp = fnh * ssh;
RealType rn = tx - tm * cxy + tmp * sxy;
RealType ain = tm * sxy + tmp * cxy;
RealType cf = un / (vn + fx2);
rn = cf * rn;
ain = cf * ain;
s1 = s1 + rn;
s2 = s2 + ain;
if ((fabs(rn) + fabs(ain)) < tol * (fabs(s1) + fabs(s2))) break;
un = un * ehn * ef;
ehn = ehn * eh;
en = en * ey;
vn = vn + fn + fn + 1.0;
fnh = fnh + 0.5;
fn = fn + 1.0;
}
s1 = s1 + s1;
s2 = s2 + s2;
if (z.real() == 0.0)
s2 = s2 + yp;
else {
s1 = s1 + sxyh * sxyh / xp;
s2 = s2 + sxy / tx;
}
// Power series for erf(xp), 0<=xp<=1
RealType w = 1.0;
RealType ak = 1.5;
RealType tm = 1.0;
for (int i = 1; i <= 17; i++) {
tm = tm * x2 / ak;
w = w + tm;
if (tm <= tol) break;
ak = ak + 1.0;
}
RealType ex = exp(-x2);
w = w * xp * fnorm * ex;
RealType cf = ex / pi;
s1 = cf * s1 + w;
s2 = cf * s2;
cans = CmplxType(s1, s2);
if (z.real() < 0.0) cans = -cans;
} // end (abs(yp) < 6.0)
else { //(abs(YP)>=6.0)
// Asymptotic expansion for 0<=xp<=1 and abs(yp)>=6
CmplxType rcz = 0.5 / cz;
CmplxType accum = CmplxType(1.0, 0.0);
CmplxType term = accum;
RealType ak = 1.0;
for (int i = 1; i <= 35; i++) {
term = -term * ak * rcz;
accum = accum + term;
if (Kokkos::abs(term) / Kokkos::abs(accum) <= tol) break;
ak = ak + 2.0;
}
accum = accum * gnorm / zp;
cz = -cz;
RealType er = cz.real();
if (fabs(er) > 670.0) return CmplxType(inf, inf);
RealType ei = cz.imag();
cz = exp(er) * CmplxType(cos(ei), sin(ei));
cans = 1.0 - accum * cz;
if (z.real() < 0.0) cans = -cans;
} // end (abs(YP)>=6.0)
} // end (xp <= 1.0)
} // end (az > 2.0)
return cans;
}
//! Compute scaled complementary error function erfcx(z)=exp(z^2)*erfc(z)
//! for z=cmplx(x,y).
template <class RealType>
KOKKOS_INLINE_FUNCTION Kokkos::complex<RealType> erfcx(
const Kokkos::complex<RealType>& z) {
// This function is a conversion of the corresponding Fortran program written
// by D.E. Amos, May,1974. D.E. Amos' revisions of Jan 86 incorporated by
// Ken Damrau on 27-Jan-1986 14:37:13
//
// Reference: NBS HANDBOOK OF MATHEMATICAL FUNCTIONS, AMS 55, By
// M. ABRAMOWITZ AND I.A. STEGUN, December,1955.
// Summary:
// If x < 0, z is replaced by -z and all computation is done in the right
// half lane, except for z inside the circle abs(z)<=2, since
// erfc(-z)=2-erfc(z). The regions for computation are divided as follows
// (1) abs(z)<=2 - Power series, NBS Handbook, p. 298
// (2) abs(z)>2 and x>1 - continued fraction, NBS Handbook, p. 298
// (3) abs(z)>2 and 0<=x<=1 and abs(y)<6 - series, NBS Handbook, p. 299
// (4) abs(z)>2 and 0<=x<=1 and abs(y)>=6 - asymptotic expansion
// Error condition: abs(z^2) > 670 is a fatal overflow error when x<0
using Kokkos::cos;
using Kokkos::exp;
using Kokkos::fabs;
using Kokkos::isinf;
using Kokkos::sin;
using Kokkos::Experimental::epsilon_v;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::inv_sqrtpi_v;
using Kokkos::numbers::pi_v;
using CmplxType = Kokkos::complex<RealType>;
constexpr auto inf = infinity_v<RealType>;
constexpr auto tol = epsilon_v<RealType>;
const RealType fnorm = 1.12837916709551;
constexpr auto gnorm = inv_sqrtpi_v<RealType>;
const RealType eh = 0.606530659712633;
const RealType ef = 0.778800783071405;
// const RealType tol = 1.0e-13;
constexpr auto pi = pi_v<RealType>;
CmplxType cans;
if ((isinf(z.real())) && (z.real() > 0)) {
cans = CmplxType(0.0, 0.0);
return cans;
}
if ((isinf(z.real())) && (z.real() < 0)) {
cans = CmplxType(inf, inf);
return cans;
}
RealType az = Kokkos::abs(z);
if (az <= 2.0) { // Series for abs(z)<=2.0
CmplxType cz = z * z;
CmplxType accum = CmplxType(1.0, 0.0);
CmplxType term = accum;
RealType ak = 1.5;
for (int i = 1; i <= 35; i++) {
term = term * cz / ak;
accum = accum + term;
if (Kokkos::abs(term) <= tol) break;
ak = ak + 1.0;
}
cz = -cz;
RealType er = cz.real();
RealType ei = cz.imag();
accum = accum * z * fnorm;
cz = exp(er) * CmplxType(cos(ei), sin(ei));
cans = 1.0 / cz - accum;
} // end (az <= 2.0)
else { //(az > 2.0)
CmplxType zp = z;
if (z.real() < 0.0) zp = -z;
CmplxType cz = zp * zp;
RealType xp = zp.real();
RealType yp = zp.imag();
if (xp > 1.0) {
// continued fraction for erfc(z), abs(z)>2
int n = static_cast<int>(100.0 / az + 5.0);
int fn = n;
CmplxType term = cz;
for (int i = 1; i <= n; i++) {
RealType fnh = fn - 0.5;
term = cz + (fnh * term) / (fn + term);
fn = fn - 1;
}
cans = zp * gnorm / term;
if (z.real() >= 0.0) return cans;
if (Kokkos::abs(cz) > 670.0) return CmplxType(inf, inf);
;
cz = -cz;
RealType er = cz.real();
RealType ei = cz.imag();
cz = exp(er) * CmplxType(cos(ei), sin(ei));
cz = 1.0 / cz;
cans = cz + cz - cans;
} // end (xp > 1.0)
else { //(xp <= 1.0)
if (fabs(yp) <
6.0) { // Series (3) for abs(z)>2 and 0<=xp<=1 and abs(yp)<6
RealType s1 = 0.0;
RealType s2 = 0.0;
RealType x2 = xp * xp;
RealType fx2 = 4.0 * x2;
RealType tx = xp + xp;
RealType xy = xp * yp;
RealType sxyh = sin(xy);
RealType sxy = sin(xy + xy);
RealType cxy = cos(xy + xy);
RealType fn = 1.0;
RealType fnh = 0.5;
RealType ey = exp(yp);
RealType en = ey;
RealType ehn = eh;
RealType un = ef;
RealType vn = 1.0;
for (int i = 1; i <= 50; i++) {
RealType ren = 1.0 / en;
RealType csh = en + ren;
RealType tm = xp * csh;
RealType ssh = en - ren;
RealType tmp = fnh * ssh;
RealType rn = tx - tm * cxy + tmp * sxy;
RealType ain = tm * sxy + tmp * cxy;
RealType cf = un / (vn + fx2);
rn = cf * rn;
ain = cf * ain;
s1 = s1 + rn;
s2 = s2 + ain;
if ((fabs(rn) + fabs(ain)) < tol * (fabs(s1) + fabs(s2))) break;
un = un * ehn * ef;
ehn = ehn * eh;
en = en * ey;
vn = vn + fn + fn + 1.0;
fnh = fnh + 0.5;
fn = fn + 1.0;
}
s1 = s1 + s1;
s2 = s2 + s2;
if (z.real() == 0.0)
s2 = s2 + yp;
else {
s1 = s1 + sxyh * sxyh / xp;
s2 = s2 + sxy / tx;
}
// Power series for erf(xp), 0<=xp<=1
RealType w = 1.0;
RealType ak = 1.5;
RealType tm = 1.0;
for (int i = 1; i <= 17; i++) {
tm = tm * x2 / ak;
w = w + tm;
if (tm <= tol) break;
ak = ak + 1.0;
}
RealType ex = exp(-x2);
w = w * xp * fnorm * ex;
CmplxType rcz = CmplxType(cxy, sxy);
RealType y2 = yp * yp;
cz = exp(x2 - y2) * rcz;
rcz = exp(-y2) * rcz;
if (z.real() >= 0.0)
cans = cz * (1.0 - w) - rcz * CmplxType(s1, s2) / pi;
else
cans = cz * (1.0 + w) + rcz * CmplxType(s1, s2) / pi;
} // end (abs(yp) < 6.0)
else { //(abs(YP)>=6.0)
// Asymptotic expansion for 0<=xp<=1 and abs(yp)>=6
CmplxType rcz = 0.5 / cz;
CmplxType accum = CmplxType(1.0, 0.0);
CmplxType term = accum;
RealType ak = 1.0;
for (int i = 1; i <= 35; i++) {
term = -term * ak * rcz;
accum = accum + term;
if (Kokkos::abs(term) / Kokkos::abs(accum) <= tol) break;
ak = ak + 2.0;
}
accum = accum * gnorm / zp;
if (z.real() < 0.0) accum = -accum;
cans = accum;
} // end (abs(YP)>=6.0)
} // end (xp <= 1.0)
} // end (az > 2.0)
return cans;
}
//! Compute scaled complementary error function erfcx(x)=exp(x^2)*erfc(x)
//! for real x
template <class RealType>
KOKKOS_INLINE_FUNCTION RealType erfcx(RealType x) {
using CmplxType = Kokkos::complex<RealType>;
// Note: using erfcx(complex) for now
// TODO: replace with an implementation of erfcx(real)
CmplxType zin = CmplxType(x, 0.0);
CmplxType zout = erfcx(zin);
return zout.real();
}
//! Compute Bessel function J0(z) of the first kind of order zero
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_j0(const CmplxType& z,
const RealType& joint_val = 25,
const IntType& bw_start = 70) {
// This function is converted and modified from the corresponding Fortran
// program CJYNB in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cbj0 --- J0(z)
using Kokkos::fabs;
using Kokkos::pow;
using Kokkos::numbers::pi_v;
CmplxType cbj0;
constexpr auto pi = pi_v<RealType>;
const RealType a[12] = {
-0.703125e-01, 0.112152099609375e+00, -0.5725014209747314e+00,
0.6074042001273483e+01, -0.1100171402692467e+03, 0.3038090510922384e+04,
-0.1188384262567832e+06, 0.6252951493434797e+07, -0.4259392165047669e+09,
0.3646840080706556e+11, -0.3833534661393944e+13, 0.4854014686852901e+15};
const RealType b[12] = {0.732421875e-01, -0.2271080017089844e+00,
0.1727727502584457e+01, -0.2438052969955606e+02,
0.5513358961220206e+03, -0.1825775547429318e+05,
0.8328593040162893e+06, -0.5006958953198893e+08,
0.3836255180230433e+10, -0.3649010818849833e+12,
0.4218971570284096e+14, -0.5827244631566907e+16};
RealType r2p = 2.0 / pi;
RealType a0 = Kokkos::abs(z);
RealType y0 = fabs(z.imag());
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cbj0 = CmplxType(1.0, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:25)
CmplxType cbs = CmplxType(0.0, 0.0);
CmplxType csu = CmplxType(0.0, 0.0);
CmplxType csv = CmplxType(0.0, 0.0);
CmplxType cf2 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 70)
cf = 2.0 * (k + 1.0) / z * cf1 - cf2;
RealType tmp_exponent = static_cast<RealType>(k / 2);
if (k == 0) cbj0 = cf;
if ((k == 2 * (k / 2)) && (k != 0)) {
if (y0 <= 1.0)
cbs = cbs + 2.0 * cf;
else
cbs = cbs + pow(-1.0, tmp_exponent) * 2.0 * cf;
csu = csu + pow(-1.0, tmp_exponent) * cf / k;
} else if (k > 1) {
csv = csv + pow(-1.0, tmp_exponent) * k / (k * k - 1.0) * cf;
}
cf2 = cf1;
cf1 = cf;
}
if (y0 <= 1.0)
cs0 = cbs + cf;
else
cs0 = (cbs + cf) / Kokkos::cos(z);
cbj0 = cbj0 / cs0;
} else { // Using asymptotic expansion (5.2.5) for |z|>joint_val
// (default:25)
CmplxType ct1 = z1 - 0.25 * pi;
CmplxType cp0 = CmplxType(1.0, 0.0);
for (int k = 1; k <= 12; k++) { // Calculate (5.2.9)
cp0 = cp0 + a[k - 1] * Kokkos::pow(z1, -2.0 * k);
}
CmplxType cq0 = -0.125 / z1;
for (int k = 1; k <= 12; k++) { // Calculate (5.2.10)
cq0 = cq0 + b[k - 1] * Kokkos::pow(z1, -2.0 * k - 1);
}
CmplxType cu = Kokkos::sqrt(r2p / z1);
cbj0 = cu * (cp0 * Kokkos::cos(ct1) - cq0 * Kokkos::sin(ct1));
}
}
return cbj0;
}
//! Compute Bessel function Y0(z) of the second kind of order zero
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_y0(const CmplxType& z,
const RealType& joint_val = 25,
const IntType& bw_start = 70) {
// This function is converted and modified from the corresponding Fortran
// program CJYNB in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cby0 --- Y0(z)
using Kokkos::fabs;
using Kokkos::pow;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::egamma_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType cby0, cbj0;
constexpr auto pi = pi_v<RealType>;
constexpr auto el = egamma_v<RealType>;
const RealType a[12] = {
-0.703125e-01, 0.112152099609375e+00, -0.5725014209747314e+00,
0.6074042001273483e+01, -0.1100171402692467e+03, 0.3038090510922384e+04,
-0.1188384262567832e+06, 0.6252951493434797e+07, -0.4259392165047669e+09,
0.3646840080706556e+11, -0.3833534661393944e+13, 0.4854014686852901e+15};
const RealType b[12] = {0.732421875e-01, -0.2271080017089844e+00,
0.1727727502584457e+01, -0.2438052969955606e+02,
0.5513358961220206e+03, -0.1825775547429318e+05,
0.8328593040162893e+06, -0.5006958953198893e+08,
0.3836255180230433e+10, -0.3649010818849833e+12,
0.4218971570284096e+14, -0.5827244631566907e+16};
RealType r2p = 2.0 / pi;
RealType a0 = Kokkos::abs(z);
RealType y0 = fabs(z.imag());
CmplxType ci = CmplxType(0.0, 1.0);
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cby0 = -CmplxType(inf, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:25)
CmplxType cbs = CmplxType(0.0, 0.0);
CmplxType csu = CmplxType(0.0, 0.0);
CmplxType csv = CmplxType(0.0, 0.0);
CmplxType cf2 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0, ce;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 70)
cf = 2.0 * (k + 1.0) / z * cf1 - cf2;
RealType tmp_exponent = static_cast<RealType>(k / 2);
if (k == 0) cbj0 = cf;
if ((k == 2 * (k / 2)) && (k != 0)) {
if (y0 <= 1.0)
cbs = cbs + 2.0 * cf;
else
cbs = cbs + pow(-1.0, tmp_exponent) * 2.0 * cf;
csu = csu + pow(-1.0, tmp_exponent) * cf / k;
} else if (k > 1) {
csv = csv + pow(-1.0, tmp_exponent) * k / (k * k - 1.0) * cf;
}
cf2 = cf1;
cf1 = cf;
}
if (y0 <= 1.0)
cs0 = cbs + cf;
else
cs0 = (cbs + cf) / Kokkos::cos(z);
cbj0 = cbj0 / cs0;
ce = Kokkos::log(z / 2.0) + el;
cby0 = r2p * (ce * cbj0 - 4.0 * csu / cs0);
} else { // Using asymptotic expansion (5.2.6) for |z|>joint_val
// (default:25)
CmplxType ct1 = z1 - 0.25 * pi;
CmplxType cp0 = CmplxType(1.0, 0.0);
for (int k = 1; k <= 12; k++) { // Calculate (5.2.9)
cp0 = cp0 + a[k - 1] * Kokkos::pow(z1, -2.0 * k);
}
CmplxType cq0 = -0.125 / z1;
for (int k = 1; k <= 12; k++) { // Calculate (5.2.10)
cq0 = cq0 + b[k - 1] * Kokkos::pow(z1, -2.0 * k - 1);
}
CmplxType cu = Kokkos::sqrt(r2p / z1);
cbj0 = cu * (cp0 * Kokkos::cos(ct1) - cq0 * Kokkos::sin(ct1));
cby0 = cu * (cp0 * Kokkos::sin(ct1) + cq0 * Kokkos::cos(ct1));
if (z.real() < 0.0) { // Apply (5.4.2)
if (z.imag() < 0.0) cby0 = cby0 - 2.0 * ci * cbj0;
if (z.imag() >= 0.0) cby0 = cby0 + 2.0 * ci * cbj0;
}
}
}
return cby0;
}
//! Compute Bessel function J1(z) of the first kind of order one
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_j1(const CmplxType& z,
const RealType& joint_val = 25,
const IntType& bw_start = 70) {
// This function is converted and modified from the corresponding Fortran
// program CJYNB in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cbj1 --- J1(z)
using Kokkos::fabs;
using Kokkos::pow;
using Kokkos::numbers::pi_v;
CmplxType cbj1;
constexpr auto pi = pi_v<RealType>;
const RealType a1[12] = {0.1171875e+00, -0.144195556640625e+00,
0.6765925884246826e+00, -0.6883914268109947e+01,
0.1215978918765359e+03, -0.3302272294480852e+04,
0.1276412726461746e+06, -0.6656367718817688e+07,
0.4502786003050393e+09, -0.3833857520742790e+11,
0.4011838599133198e+13, -0.5060568503314727e+15};
const RealType b1[12] = {
-0.1025390625e+00, 0.2775764465332031e+00, -0.1993531733751297e+01,
0.2724882731126854e+02, -0.6038440767050702e+03, 0.1971837591223663e+05,
-0.8902978767070678e+06, 0.5310411010968522e+08, -0.4043620325107754e+10,
0.3827011346598605e+12, -0.4406481417852278e+14, 0.6065091351222699e+16};
RealType r2p = 2.0 / pi;
RealType a0 = Kokkos::abs(z);
RealType y0 = fabs(z.imag());
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cbj1 = CmplxType(0.0, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:25)
CmplxType cbs = CmplxType(0.0, 0.0);
CmplxType csu = CmplxType(0.0, 0.0);
CmplxType csv = CmplxType(0.0, 0.0);
CmplxType cf2 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 70)
cf = 2.0 * (k + 1.0) / z * cf1 - cf2;
RealType tmp_exponent = static_cast<RealType>(k / 2);
if (k == 1) cbj1 = cf;
if ((k == 2 * (k / 2)) && (k != 0)) {
if (y0 <= 1.0)
cbs = cbs + 2.0 * cf;
else
cbs = cbs + pow(-1.0, tmp_exponent) * 2.0 * cf;
csu = csu + pow(-1.0, tmp_exponent) * cf / k;
} else if (k > 1) {
csv = csv + pow(-1.0, tmp_exponent) * k / (k * k - 1.0) * cf;
}
cf2 = cf1;
cf1 = cf;
}
if (y0 <= 1.0)
cs0 = cbs + cf;
else
cs0 = (cbs + cf) / Kokkos::cos(z);
cbj1 = cbj1 / cs0;
} else { // Using asymptotic expansion (5.2.5) for |z|>joint_val
// (default:25)
CmplxType ct2 = z1 - 0.75 * pi;
CmplxType cp1 = CmplxType(1.0, 0.0);
for (int k = 1; k <= 12; k++) { // Calculate (5.2.11)
cp1 = cp1 + a1[k - 1] * Kokkos::pow(z1, -2.0 * k);
}
CmplxType cq1 = 0.375 / z1;
for (int k = 1; k <= 12; k++) { // Calculate (5.2.12)
cq1 = cq1 + b1[k - 1] * Kokkos::pow(z1, -2.0 * k - 1);
}
CmplxType cu = Kokkos::sqrt(r2p / z1);
cbj1 = cu * (cp1 * Kokkos::cos(ct2) - cq1 * Kokkos::sin(ct2));
if (real(z) < 0.0) { // Apply (5.4.2)
cbj1 = -cbj1;
}
}
}
return cbj1;
}
//! Compute Bessel function Y1(z) of the second kind of order one
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_y1(const CmplxType& z,
const RealType& joint_val = 25,
const IntType& bw_start = 70) {
// This function is converted and modified from the corresponding Fortran
// program CJYNB in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cby1 --- Y1(z)
using Kokkos::fabs;
using Kokkos::pow;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::egamma_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType cby1, cbj0, cbj1, cby0;
constexpr auto pi = pi_v<RealType>;
constexpr auto el = egamma_v<RealType>;
const RealType a1[12] = {0.1171875e+00, -0.144195556640625e+00,
0.6765925884246826e+00, -0.6883914268109947e+01,
0.1215978918765359e+03, -0.3302272294480852e+04,
0.1276412726461746e+06, -0.6656367718817688e+07,
0.4502786003050393e+09, -0.3833857520742790e+11,
0.4011838599133198e+13, -0.5060568503314727e+15};
const RealType b1[12] = {
-0.1025390625e+00, 0.2775764465332031e+00, -0.1993531733751297e+01,
0.2724882731126854e+02, -0.6038440767050702e+03, 0.1971837591223663e+05,
-0.8902978767070678e+06, 0.5310411010968522e+08, -0.4043620325107754e+10,
0.3827011346598605e+12, -0.4406481417852278e+14, 0.6065091351222699e+16};
RealType r2p = 2.0 / pi;
RealType a0 = Kokkos::abs(z);
RealType y0 = fabs(z.imag());
CmplxType ci = CmplxType(0.0, 1.0);
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cby1 = -CmplxType(inf, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:25)
CmplxType cbs = CmplxType(0.0, 0.0);
CmplxType csu = CmplxType(0.0, 0.0);
CmplxType csv = CmplxType(0.0, 0.0);
CmplxType cf2 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0, ce;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 70)
cf = 2.0 * (k + 1.0) / z * cf1 - cf2;
RealType tmp_exponent = static_cast<RealType>(k / 2);
if (k == 1) cbj1 = cf;
if (k == 0) cbj0 = cf;
if ((k == 2 * (k / 2)) && (k != 0)) {
if (y0 <= 1.0)
cbs = cbs + 2.0 * cf;
else
cbs = cbs + pow(-1.0, tmp_exponent) * 2.0 * cf;
csu = csu + pow(-1.0, tmp_exponent) * cf / k;
} else if (k > 1) {
csv = csv + pow(-1.0, tmp_exponent) * k / (k * k - 1.0) * cf;
}
cf2 = cf1;
cf1 = cf;
}
if (y0 <= 1.0)
cs0 = cbs + cf;
else
cs0 = (cbs + cf) / Kokkos::cos(z);
cbj0 = cbj0 / cs0;
ce = Kokkos::log(z / 2.0) + el;
cby0 = r2p * (ce * cbj0 - 4.0 * csu / cs0);
cbj1 = cbj1 / cs0;
cby1 = (cbj1 * cby0 - 2.0 / (pi * z)) / cbj0;
} else { // Using asymptotic expansion (5.2.5) for |z|>joint_val
// (default:25)
CmplxType ct2 = z1 - 0.75 * pi;
CmplxType cp1 = CmplxType(1.0, 0.0);
for (int k = 1; k <= 12; k++) { // Calculate (5.2.11)
cp1 = cp1 + a1[k - 1] * Kokkos::pow(z1, -2.0 * k);
}
CmplxType cq1 = 0.375 / z1;
for (int k = 1; k <= 12; k++) { // Calculate (5.2.12)
cq1 = cq1 + b1[k - 1] * Kokkos::pow(z1, -2.0 * k - 1);
}
CmplxType cu = Kokkos::sqrt(r2p / z1);
cbj1 = cu * (cp1 * Kokkos::cos(ct2) - cq1 * Kokkos::sin(ct2));
cby1 = cu * (cp1 * Kokkos::sin(ct2) + cq1 * Kokkos::cos(ct2));
if (z.real() < 0.0) { // Apply (5.4.2)
if (z.imag() < 0.0) cby1 = -(cby1 - 2.0 * ci * cbj1);
if (z.imag() >= 0.0) cby1 = -(cby1 + 2.0 * ci * cbj1);
}
}
}
return cby1;
}
//! Compute modified Bessel function I0(z) of the first kind of order zero
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_i0(const CmplxType& z,
const RealType& joint_val = 18,
const IntType& n_terms = 50) {
// This function is converted and modified from the corresponding Fortran
// programs CIK01 in S. Zhang & J. Jin "Computation of Special
// Functions" (Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// n_terms --- Numbers of terms used in the power series
// Output: cbi0 --- I0(z)
CmplxType cbi0(1.0, 0.0);
RealType a0 = Kokkos::abs(z);
CmplxType z1 = z;
if (a0 > 1e-100) {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) {
// Using power series definition for |z|<=joint_val (default:18)
CmplxType cr = CmplxType(1.0e+00, 0.0e+00);
CmplxType z2 = z * z;
for (int k = 1; k < n_terms; ++k) {
cr = RealType(.25) * cr * z2 / CmplxType(k * k);
cbi0 += cr;
if (Kokkos::abs(cr / cbi0) < RealType(1.e-15)) continue;
}
} else {
// Using asymptotic expansion (6.2.1) for |z|>joint_val (default:18)
const RealType a[12] = {0.125,
7.03125e-2,
7.32421875e-2,
1.1215209960938e-1,
2.2710800170898e-1,
5.7250142097473e-1,
1.7277275025845e0,
6.0740420012735e0,
2.4380529699556e1,
1.1001714026925e2,
5.5133589612202e2,
3.0380905109224e3};
for (int k = 1; k <= 12; k++) {
cbi0 += a[k - 1] * Kokkos::pow(z1, -k);
}
cbi0 *= Kokkos::exp(z1) /
Kokkos::sqrt(2.0 * Kokkos::numbers::pi_v<RealType> * z1);
}
}
return cbi0;
}
//! Compute modified Bessel function K0(z) of the second kind of order zero
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_k0(const CmplxType& z,
const RealType& joint_val = 9,
const IntType& bw_start = 30) {
// This function is converted and modified from the corresponding Fortran
// programs CIKNB and CIK01 in S. Zhang & J. Jin "Computation of Special
// Functions" (Wiley, 1996).
// Purpose: Compute modified Bessel function K0(z) of the second kind of
// order zero for a complex argument
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cbk0 --- K0(z)
using Kokkos::pow;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::egamma_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType cbk0, cbi0;
constexpr auto pi = pi_v<RealType>;
constexpr auto el = egamma_v<RealType>;
RealType a0 = Kokkos::abs(z);
CmplxType ci = CmplxType(0.0, 1.0);
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cbk0 = CmplxType(inf, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:9)
CmplxType cbs = CmplxType(0.0, 0.0);
CmplxType csk0 = CmplxType(0.0, 0.0);
CmplxType cf0 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 30)
cf = 2.0 * (k + 1.0) * cf1 / z1 + cf0;
if (k == 0) cbi0 = cf;
if ((k == 2 * (k / 2)) && (k != 0)) {
csk0 = csk0 + 4.0 * cf / static_cast<RealType>(k);
}
cbs = cbs + 2.0 * cf;
cf0 = cf1;
cf1 = cf;
}
cs0 = Kokkos::exp(z1) / (cbs - cf);
cbi0 = cbi0 * cs0;
cbk0 = -(Kokkos::log(0.5 * z1) + el) * cbi0 + cs0 * csk0;
} else { // Using asymptotic expansion (6.2.2) for |z|>joint_val
// (default:9)
CmplxType ca0 = Kokkos::sqrt(pi / (2.0 * z1)) * Kokkos::exp(-z1);
CmplxType cbkl = CmplxType(1.0, 0.0);
CmplxType cr = CmplxType(1.0, 0.0);
for (int k = 1; k <= 30; k++) {
cr = 0.125 * cr * (0.0 - pow(2.0 * k - 1.0, 2.0)) / (k * z1);
cbkl = cbkl + cr;
}
cbk0 = ca0 * cbkl;
}
if (z.real() < 0.0) { // Apply (6.4.4)
if (z.imag() < 0.0)
cbk0 = cbk0 + ci * pi * cyl_bessel_i0<CmplxType, RealType, IntType>(z);
if (z.imag() >= 0.0)
cbk0 = cbk0 - ci * pi * cyl_bessel_i0<CmplxType, RealType, IntType>(z);
}
}
return cbk0;
}
//! Compute modified Bessel function I1(z) of the first kind of order one
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_i1(const CmplxType& z,
const RealType& joint_val = 25,
const IntType& bw_start = 70) {
// This function is converted and modified from the corresponding Fortran
// programs CIKNB and CIK01 in S. Zhang & J. Jin "Computation of Special
// Functions" (Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cbi1 --- I1(z)
using Kokkos::numbers::pi_v;
CmplxType cbi1;
constexpr auto pi = pi_v<RealType>;
const RealType b[12] = {-0.375,
-1.171875e-1,
-1.025390625e-1,
-1.4419555664063e-1,
-2.7757644653320e-1,
-6.7659258842468e-1,
-1.9935317337513,
-6.8839142681099,
-2.7248827311269e1,
-1.2159789187654e2,
-6.0384407670507e2,
-3.3022722944809e3};
RealType a0 = Kokkos::abs(z);
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cbi1 = CmplxType(0.0, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:25)
CmplxType cbs = CmplxType(0.0, 0.0);
// CmplxType csk0 = CmplxType(0.0,0.0);
CmplxType cf0 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 70)
cf = 2.0 * (k + 1.0) * cf1 / z1 + cf0;
if (k == 1) cbi1 = cf;
// if ((k == 2*(k/2)) && (k != 0)) {
// csk0 = csk0+4.0*cf/static_cast<RealType>(k);
//}
cbs = cbs + 2.0 * cf;
cf0 = cf1;
cf1 = cf;
}
cs0 = Kokkos::exp(z1) / (cbs - cf);
cbi1 = cbi1 * cs0;
} else { // Using asymptotic expansion (6.2.1) for |z|>joint_val
// (default:25)
CmplxType ca = Kokkos::exp(z1) / Kokkos::sqrt(2.0 * pi * z1);
cbi1 = CmplxType(1.0, 0.0);
CmplxType zr = 1.0 / z1;
for (int k = 1; k <= 12; k++) {
cbi1 = cbi1 + b[k - 1] * Kokkos::pow(zr, 1.0 * k);
}
cbi1 = ca * cbi1;
}
if (z.real() < 0.0) { // Apply (6.4.4)
cbi1 = -cbi1;
}
}
return cbi1;
}
//! Compute modified Bessel function K1(z) of the second kind of order one
//! for a complex argument
template <class CmplxType, class RealType, class IntType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_k1(const CmplxType& z,
const RealType& joint_val = 9,
const IntType& bw_start = 30) {
// This function is converted and modified from the corresponding Fortran
// programs CIKNB and CIK01 in S. Zhang & J. Jin "Computation of Special
// Functions" (Wiley, 1996).
// Input : z --- Complex argument
// joint_val --- Joint point of abs(z) separating small and large
// argument regions
// bw_start --- Starting point for backward recurrence
// Output: cbk1 --- K1(z)
using Kokkos::pow;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::egamma_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType cbk0, cbi0, cbk1, cbi1;
constexpr auto pi = pi_v<RealType>;
constexpr auto el = egamma_v<RealType>;
RealType a0 = Kokkos::abs(z);
CmplxType ci = CmplxType(0.0, 1.0);
CmplxType z1 = z;
if (a0 < 1e-100) { // Treat z=0 as a special case
cbk1 = CmplxType(inf, 0.0);
} else {
if (z.real() < 0.0) z1 = -z;
if (a0 <= joint_val) { // Using backward recurrence for |z|<=joint_val
// (default:9)
CmplxType cbs = CmplxType(0.0, 0.0);
CmplxType csk0 = CmplxType(0.0, 0.0);
CmplxType cf0 = CmplxType(0.0, 0.0);
CmplxType cf1 = CmplxType(1e-100, 0.0);
CmplxType cf, cs0;
for (int k = bw_start; k >= 0; k--) { // Backward recurrence (default:
// 30)
cf = 2.0 * (k + 1.0) * cf1 / z1 + cf0;
if (k == 1) cbi1 = cf;
if (k == 0) cbi0 = cf;
if ((k == 2 * (k / 2)) && (k != 0)) {
csk0 = csk0 + 4.0 * cf / static_cast<RealType>(k);
}
cbs = cbs + 2.0 * cf;
cf0 = cf1;
cf1 = cf;
}
cs0 = Kokkos::exp(z1) / (cbs - cf);
cbi0 = cbi0 * cs0;
cbi1 = cbi1 * cs0;
cbk0 = -(Kokkos::log(0.5 * z1) + el) * cbi0 + cs0 * csk0;
cbk1 = (1.0 / z1 - cbi1 * cbk0) / cbi0;
} else { // Using asymptotic expansion (6.2.2) for |z|>joint_val
// (default:9)
CmplxType ca0 = Kokkos::sqrt(pi / (2.0 * z1)) * Kokkos::exp(-z1);
CmplxType cbkl = CmplxType(1.0, 0.0);
CmplxType cr = CmplxType(1.0, 0.0);
for (int k = 1; k <= 30; k++) {
cr = 0.125 * cr * (4.0 - pow(2.0 * k - 1.0, 2.0)) / (k * z1);
cbkl = cbkl + cr;
}
cbk1 = ca0 * cbkl;
}
if (z.real() < 0.0) { // Apply (6.4.4)
if (z.imag() < 0.0)
cbk1 = -cbk1 - ci * pi * cyl_bessel_i1<CmplxType, RealType, IntType>(z);
if (z.imag() >= 0.0)
cbk1 = -cbk1 + ci * pi * cyl_bessel_i1<CmplxType, RealType, IntType>(z);
}
}
return cbk1;
}
//! Compute Hankel function H10(z) of the first kind of order zero
//! for a complex argument
template <class CmplxType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_h10(const CmplxType& z) {
// This function is converted and modified from the corresponding Fortran
// programs CH12N in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
using RealType = typename CmplxType::value_type;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType ch10, cbk0, cbj0, cby0;
constexpr auto pi = pi_v<RealType>;
CmplxType ci = CmplxType(0.0, 1.0);
if ((z.real() == 0.0) && (z.imag() == 0.0)) {
ch10 = CmplxType(1.0, -inf);
} else if (z.imag() <= 0.0) {
cbj0 = cyl_bessel_j0<CmplxType, RealType, int>(z);
cby0 = cyl_bessel_y0<CmplxType, RealType, int>(z);
ch10 = cbj0 + ci * cby0;
} else { //(z.imag() > 0.0)
cbk0 = cyl_bessel_k0<CmplxType, RealType, int>(-ci * z, 18.0, 70);
ch10 = 2.0 / (pi * ci) * cbk0;
}
return ch10;
}
//! Compute Hankel function H11(z) of the first kind of order one
//! for a complex argument
template <class CmplxType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_h11(const CmplxType& z) {
// This function is converted and modified from the corresponding Fortran
// programs CH12N in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
using RealType = typename CmplxType::value_type;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType ch11, cbk1, cbj1, cby1;
constexpr auto pi = pi_v<RealType>;
CmplxType ci = CmplxType(0.0, 1.0);
if ((z.real() == 0.0) && (z.imag() == 0.0)) {
ch11 = CmplxType(0.0, -inf);
} else if (z.imag() <= 0.0) {
cbj1 = cyl_bessel_j1<CmplxType, RealType, int>(z);
cby1 = cyl_bessel_y1<CmplxType, RealType, int>(z);
ch11 = cbj1 + ci * cby1;
} else { //(z.imag() > 0.0)
cbk1 = cyl_bessel_k1<CmplxType, RealType, int>(-ci * z, 18.0, 70);
ch11 = -2.0 / pi * cbk1;
}
return ch11;
}
//! Compute Hankel function H20(z) of the second kind of order zero
//! for a complex argument
template <class CmplxType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_h20(const CmplxType& z) {
// This function is converted and modified from the corresponding Fortran
// programs CH12N in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
using RealType = typename CmplxType::value_type;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType ch20, cbk0, cbj0, cby0;
constexpr auto pi = pi_v<RealType>;
CmplxType ci = CmplxType(0.0, 1.0);
if ((z.real() == 0.0) && (z.imag() == 0.0)) {
ch20 = CmplxType(1.0, inf);
} else if (z.imag() >= 0.0) {
cbj0 = cyl_bessel_j0<CmplxType, RealType, int>(z);
cby0 = cyl_bessel_y0<CmplxType, RealType, int>(z);
ch20 = cbj0 - ci * cby0;
} else { //(z.imag() < 0.0)
cbk0 = cyl_bessel_k0<CmplxType, RealType, int>(ci * z, 18.0, 70);
ch20 = 2.0 / pi * ci * cbk0;
}
return ch20;
}
//! Compute Hankel function H21(z) of the second kind of order one
//! for a complex argument
template <class CmplxType>
KOKKOS_INLINE_FUNCTION CmplxType cyl_bessel_h21(const CmplxType& z) {
// This function is converted and modified from the corresponding Fortran
// programs CH12N in S. Zhang & J. Jin "Computation of Special Functions"
//(Wiley, 1996).
using RealType = typename CmplxType::value_type;
using Kokkos::Experimental::infinity_v;
using Kokkos::numbers::pi_v;
constexpr auto inf = infinity_v<RealType>;
CmplxType ch21, cbk1, cbj1, cby1;
constexpr auto pi = pi_v<RealType>;
CmplxType ci = CmplxType(0.0, 1.0);
if ((z.real() == 0.0) && (z.imag() == 0.0)) {
ch21 = CmplxType(0.0, inf);
} else if (z.imag() >= 0.0) {
cbj1 = cyl_bessel_j1<CmplxType, RealType, int>(z);
cby1 = cyl_bessel_y1<CmplxType, RealType, int>(z);
ch21 = cbj1 - ci * cby1;
} else { //(z.imag() < 0.0)
cbk1 = cyl_bessel_k1<CmplxType, RealType, int>(ci * z, 18.0, 70);
ch21 = -2.0 / pi * cbk1;
}
return ch21;
}
} // namespace Experimental
} // namespace Kokkos
#ifdef KOKKOS_IMPL_PUBLIC_INCLUDE_NOTDEFINED_MATHSPECFUNCTIONS
#undef KOKKOS_IMPL_PUBLIC_INCLUDE
#undef KOKKOS_IMPL_PUBLIC_INCLUDE_NOTDEFINED_MATHSPECFUNCTIONS
#endif
#endif