Files
lammps/lib/kokkos/simd/unit_tests/include/TestSIMD_MathOps.hpp
2024-04-05 08:20:57 -06:00

315 lines
13 KiB
C++

//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#ifndef KOKKOS_TEST_SIMD_MATH_OPS_HPP
#define KOKKOS_TEST_SIMD_MATH_OPS_HPP
#include <Kokkos_SIMD.hpp>
#include <SIMDTesting_Utilities.hpp>
template <class Abi, class Loader, class BinaryOp, class T>
void host_check_math_op_one_loader(BinaryOp binary_op, std::size_t n,
T const* first_args, T const* second_args) {
Loader loader;
using simd_type = Kokkos::Experimental::simd<T, Abi>;
constexpr std::size_t width = simd_type::size();
for (std::size_t i = 0; i < n; i += width) {
std::size_t const nremaining = n - i;
std::size_t const nlanes = Kokkos::min(nremaining, width);
simd_type first_arg;
bool const loaded_first_arg =
loader.host_load(first_args + i, nlanes, first_arg);
simd_type second_arg;
bool const loaded_second_arg =
loader.host_load(second_args + i, nlanes, second_arg);
if (!(loaded_first_arg && loaded_second_arg)) continue;
simd_type expected_result;
// gcc 8.4.0 warns if using nlanes as upper bound about first_arg and/or
// second_arg being uninitialized
for (std::size_t lane = 0; lane < simd_type::size(); ++lane) {
if (lane < nlanes)
expected_result[lane] =
binary_op.on_host(T(first_arg[lane]), T(second_arg[lane]));
}
simd_type const computed_result = binary_op.on_host(first_arg, second_arg);
host_check_equality(expected_result, computed_result, nlanes);
}
}
template <class Abi, class Loader, class UnaryOp, class T>
void host_check_math_op_one_loader(UnaryOp unary_op, std::size_t n,
T const* args) {
Loader loader;
using simd_type = Kokkos::Experimental::simd<T, Abi>;
constexpr std::size_t width = simd_type::size();
for (std::size_t i = 0; i < n; i += width) {
std::size_t const nremaining = n - i;
std::size_t const nlanes = Kokkos::min(nremaining, width);
simd_type arg;
bool const loaded_arg = loader.host_load(args + i, nlanes, arg);
if (!loaded_arg) continue;
decltype(unary_op.on_host(arg)) expected_result;
for (std::size_t lane = 0; lane < simd_type::size(); ++lane) {
if (lane < nlanes) {
if constexpr (std::is_same_v<UnaryOp, cbrt_op> ||
std::is_same_v<UnaryOp, exp_op> ||
std::is_same_v<UnaryOp, log_op>)
arg[lane] = Kokkos::abs(arg[lane]);
expected_result[lane] = unary_op.on_host_serial(T(arg[lane]));
}
}
auto computed_result = unary_op.on_host(arg);
host_check_equality(expected_result, computed_result, nlanes);
}
}
template <class Abi, class Op, class... T>
inline void host_check_math_op_all_loaders(Op op, std::size_t n,
T const*... args) {
host_check_math_op_one_loader<Abi, load_element_aligned>(op, n, args...);
host_check_math_op_one_loader<Abi, load_masked>(op, n, args...);
host_check_math_op_one_loader<Abi, load_as_scalars>(op, n, args...);
host_check_math_op_one_loader<Abi, load_vector_aligned>(op, n, args...);
}
template <typename Abi, typename DataType, size_t n>
inline void host_check_all_math_ops(const DataType (&first_args)[n],
const DataType (&second_args)[n]) {
host_check_math_op_all_loaders<Abi>(plus(), n, first_args, second_args);
host_check_math_op_all_loaders<Abi>(minus(), n, first_args, second_args);
host_check_math_op_all_loaders<Abi>(multiplies(), n, first_args, second_args);
host_check_math_op_all_loaders<Abi>(absolutes(), n, first_args);
host_check_math_op_all_loaders<Abi>(floors(), n, first_args);
host_check_math_op_all_loaders<Abi>(ceils(), n, first_args);
host_check_math_op_all_loaders<Abi>(rounds(), n, first_args);
host_check_math_op_all_loaders<Abi>(truncates(), n, first_args);
// TODO: Place fallback implementations for all simd integer types
if constexpr (std::is_floating_point_v<DataType>) {
host_check_math_op_all_loaders<Abi>(divides(), n, first_args, second_args);
#if defined(__INTEL_COMPILER) && \
(defined(KOKKOS_ARCH_AVX2) || defined(KOKKOS_ARCH_AVX512XEON))
host_check_math_op_all_loaders<Abi>(cbrt_op(), n, first_args);
host_check_math_op_all_loaders<Abi>(exp_op(), n, first_args);
host_check_math_op_all_loaders<Abi>(log_op(), n, first_args);
#endif
}
}
template <typename Abi, typename DataType>
inline void host_check_abi_size() {
using simd_type = Kokkos::Experimental::simd<DataType, Abi>;
using mask_type = typename simd_type::mask_type;
static_assert(simd_type::size() == mask_type::size());
}
template <typename Abi, typename DataType>
inline void host_check_math_ops() {
constexpr size_t n = 11;
constexpr size_t alignment =
Kokkos::Experimental::simd<DataType, Abi>::size() * sizeof(DataType);
host_check_abi_size<Abi, DataType>();
if constexpr (!std::is_integral_v<DataType>) {
alignas(alignment) DataType const first_args[n] = {
0.1, 0.4, 0.5, 0.7, 1.0, 1.5, -2.0, 10.0, 0.0, 1.2, -2.8};
alignas(alignment) DataType const second_args[n] = {
1.0, 0.2, 1.1, 1.8, -0.1, -3.0, -2.4, 1.0, 13.0, -3.2, -2.1};
host_check_all_math_ops<Abi>(first_args, second_args);
} else {
if constexpr (std::is_signed_v<DataType>) {
alignas(alignment)
DataType const first_args[n] = {1, 2, -1, 10, 0, 1, -2, 10, 0, 1, -2};
alignas(alignment) DataType const second_args[n] = {1, 2, 1, 1, 1, -3,
-2, 1, 13, -3, -2};
host_check_all_math_ops<Abi>(first_args, second_args);
} else {
alignas(alignment)
DataType const first_args[n] = {1, 2, 1, 10, 0, 1, 2, 10, 0, 1, 2};
alignas(alignment)
DataType const second_args[n] = {1, 2, 1, 1, 1, 3, 2, 1, 13, 3, 2};
host_check_all_math_ops<Abi>(first_args, second_args);
}
}
}
template <typename Abi, typename... DataTypes>
inline void host_check_math_ops_all_types(
Kokkos::Experimental::Impl::data_types<DataTypes...>) {
(host_check_math_ops<Abi, DataTypes>(), ...);
}
template <typename... Abis>
inline void host_check_math_ops_all_abis(
Kokkos::Experimental::Impl::abi_set<Abis...>) {
using DataTypes = Kokkos::Experimental::Impl::data_type_set;
(host_check_math_ops_all_types<Abis>(DataTypes()), ...);
}
template <typename Abi, typename Loader, typename BinaryOp, typename T>
KOKKOS_INLINE_FUNCTION void device_check_math_op_one_loader(
BinaryOp binary_op, std::size_t n, T const* first_args,
T const* second_args) {
Loader loader;
using simd_type = Kokkos::Experimental::simd<T, Abi>;
constexpr std::size_t width = simd_type::size();
for (std::size_t i = 0; i < n; i += width) {
std::size_t const nremaining = n - i;
std::size_t const nlanes = Kokkos::min(nremaining, width);
simd_type first_arg;
bool const loaded_first_arg =
loader.device_load(first_args + i, nlanes, first_arg);
simd_type second_arg;
bool const loaded_second_arg =
loader.device_load(second_args + i, nlanes, second_arg);
if (!(loaded_first_arg && loaded_second_arg)) continue;
simd_type expected_result;
for (std::size_t lane = 0; lane < nlanes; ++lane) {
expected_result[lane] =
binary_op.on_device(first_arg[lane], second_arg[lane]);
}
simd_type const computed_result =
binary_op.on_device(first_arg, second_arg);
device_check_equality(expected_result, computed_result, nlanes);
}
}
template <typename Abi, typename Loader, typename UnaryOp, typename T>
KOKKOS_INLINE_FUNCTION void device_check_math_op_one_loader(UnaryOp unary_op,
std::size_t n,
T const* args) {
Loader loader;
using simd_type = Kokkos::Experimental::simd<T, Abi>;
constexpr std::size_t width = simd_type::size();
for (std::size_t i = 0; i < n; i += width) {
std::size_t const nremaining = n - i;
std::size_t const nlanes = Kokkos::min(nremaining, width);
simd_type arg;
bool const loaded_arg = loader.device_load(args + i, nlanes, arg);
if (!loaded_arg) continue;
auto computed_result = unary_op.on_device(arg);
decltype(computed_result) expected_result;
for (std::size_t lane = 0; lane < nlanes; ++lane) {
expected_result[lane] = unary_op.on_device_serial(arg[lane]);
}
device_check_equality(expected_result, computed_result, nlanes);
}
}
template <typename Abi, typename Op, typename... T>
KOKKOS_INLINE_FUNCTION void device_check_math_op_all_loaders(Op op,
std::size_t n,
T const*... args) {
device_check_math_op_one_loader<Abi, load_element_aligned>(op, n, args...);
device_check_math_op_one_loader<Abi, load_masked>(op, n, args...);
device_check_math_op_one_loader<Abi, load_as_scalars>(op, n, args...);
device_check_math_op_one_loader<Abi, load_vector_aligned>(op, n, args...);
}
template <typename Abi, typename DataType, size_t n>
KOKKOS_INLINE_FUNCTION void device_check_all_math_ops(
const DataType (&first_args)[n], const DataType (&second_args)[n]) {
device_check_math_op_all_loaders<Abi>(plus(), n, first_args, second_args);
device_check_math_op_all_loaders<Abi>(minus(), n, first_args, second_args);
device_check_math_op_all_loaders<Abi>(multiplies(), n, first_args,
second_args);
device_check_math_op_all_loaders<Abi>(absolutes(), n, first_args);
device_check_math_op_all_loaders<Abi>(floors(), n, first_args);
device_check_math_op_all_loaders<Abi>(ceils(), n, first_args);
device_check_math_op_all_loaders<Abi>(rounds(), n, first_args);
device_check_math_op_all_loaders<Abi>(truncates(), n, first_args);
if constexpr (std::is_floating_point_v<DataType>) {
device_check_math_op_all_loaders<Abi>(divides(), n, first_args,
second_args);
}
}
template <typename Abi, typename DataType>
KOKKOS_INLINE_FUNCTION void device_check_abi_size() {
using simd_type = Kokkos::Experimental::simd<DataType, Abi>;
using mask_type = typename simd_type::mask_type;
static_assert(simd_type::size() == mask_type::size());
}
template <typename Abi, typename DataType>
KOKKOS_INLINE_FUNCTION void device_check_math_ops() {
constexpr size_t n = 11;
device_check_abi_size<Abi, DataType>();
if constexpr (!std::is_integral_v<DataType>) {
DataType const first_args[n] = {0.1, 0.4, 0.5, 0.7, 1.0, 1.5,
-2.0, 10.0, 0.0, 1.2, -2.8};
DataType const second_args[n] = {1.0, 0.2, 1.1, 1.8, -0.1, -3.0,
-2.4, 1.0, 13.0, -3.2, -2.1};
device_check_all_math_ops<Abi>(first_args, second_args);
} else {
if constexpr (std::is_signed_v<DataType>) {
DataType const first_args[n] = {1, 2, -1, 10, 0, 1, -2, 10, 0, 1, -2};
DataType const second_args[n] = {1, 2, 1, 1, 1, -3, -2, 1, 13, -3, -2};
device_check_all_math_ops<Abi>(first_args, second_args);
} else {
DataType const first_args[n] = {1, 2, 1, 10, 0, 1, 2, 10, 0, 1, 2};
DataType const second_args[n] = {1, 2, 1, 1, 1, 3, 2, 1, 13, 3, 2};
device_check_all_math_ops<Abi>(first_args, second_args);
}
}
}
template <typename Abi, typename... DataTypes>
KOKKOS_INLINE_FUNCTION void device_check_math_ops_all_types(
Kokkos::Experimental::Impl::data_types<DataTypes...>) {
(device_check_math_ops<Abi, DataTypes>(), ...);
}
template <typename... Abis>
KOKKOS_INLINE_FUNCTION void device_check_math_ops_all_abis(
Kokkos::Experimental::Impl::abi_set<Abis...>) {
using DataTypes = Kokkos::Experimental::Impl::data_type_set;
(device_check_math_ops_all_types<Abis>(DataTypes()), ...);
}
class simd_device_math_ops_functor {
public:
KOKKOS_INLINE_FUNCTION void operator()(int) const {
device_check_math_ops_all_abis(
Kokkos::Experimental::Impl::device_abi_set());
}
};
TEST(simd, host_math_ops) {
host_check_math_ops_all_abis(Kokkos::Experimental::Impl::host_abi_set());
}
TEST(simd, device_math_ops) {
#ifdef KOKKOS_ENABLE_OPENMPTARGET // FIXME_OPENMPTARGET
GTEST_SKIP()
<< "skipping because of a non-deterministic failure reporting: "
"Failure to synchronize stream (nil): Error in "
"cuStreamSynchronize: an illegal memory access was encountered";
#endif
Kokkos::parallel_for(1, simd_device_math_ops_functor());
}
#endif