Files
lammps/src/ASPHERE/pair_ylz.cpp
2022-11-09 11:15:18 +08:00

510 lines
16 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS Development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Hongyan Yuan (SUSTech)
------------------------------------------------------------------------- */
#include "pair_ylz.h"
#include "atom.h"
#include "atom_vec_ellipsoid.h"
#include "citeme.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "math_extra.h"
#include "memory.h"
#include "neigh_list.h"
#include "neighbor.h"
#include <cmath>
using namespace LAMMPS_NS;
using MathConst::MY_4PI;
using MathConst::MY_PI2;
using MathConst::MY_TWOBYSIXTH;
static const char cite_pair_ylz[] =
"pair ylz command:\n\n"
"@Article{Yuan10,\n"
" author = {H. Yuan, C. Huang, J. Li, G. Lykotrafitis, and S. Zhang},\n"
" title = {One-particle-thick, solvent-free, coarse-grained model for biological and "
"biomimetic fluid membranes},\n"
" journal = {Phys. Rev. E},\n"
" year = 2010,\n"
" volume = 82,\n"
" pages = {011905}\n"
"}\n\n";
/* ---------------------------------------------------------------------- */
PairYLZ::PairYLZ(LAMMPS *lmp) :
Pair(lmp), epsilon(nullptr), sigma(nullptr), cut(nullptr), zeta(nullptr), mu(nullptr),
beta(nullptr), avec(nullptr)
{
if (lmp->citeme) lmp->citeme->add(cite_pair_ylz);
single_enable = 0;
writedata = 1;
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairYLZ::~PairYLZ()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(epsilon);
memory->destroy(sigma);
memory->destroy(cut);
memory->destroy(zeta);
memory->destroy(mu);
memory->destroy(beta);
}
}
/* ---------------------------------------------------------------------- */
void PairYLZ::compute(int eflag, int vflag)
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double evdwl, one_eng, rsq, factor_lj;
double fforce[3], ttor[3], rtor[3], r12[3];
double a1[3][3], a2[3][3];
int *ilist, *jlist, *numneigh, **firstneigh;
double *iquat, *jquat;
evdwl = 0.0;
ev_init(eflag, vflag);
AtomVecEllipsoid::Bonus *bonus = avec->bonus;
int *ellipsoid = atom->ellipsoid;
double **x = atom->x;
double **f = atom->f;
double **tor = atom->torque;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
itype = type[i];
iquat = bonus[ellipsoid[i]].quat;
MathExtra::quat_to_mat_trans(iquat, a1);
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
// r12 = center to center vector
r12[0] = x[j][0] - x[i][0];
r12[1] = x[j][1] - x[i][1];
r12[2] = x[j][2] - x[i][2];
rsq = MathExtra::dot3(r12, r12);
jtype = type[j];
// compute if less than cutoff
if (rsq < cutsq[itype][jtype]) {
jquat = bonus[ellipsoid[j]].quat;
MathExtra::quat_to_mat_trans(jquat, a2);
one_eng = ylz_analytic(i, j, a1, a2, r12, rsq, fforce, ttor, rtor);
fforce[0] *= factor_lj;
fforce[1] *= factor_lj;
fforce[2] *= factor_lj;
ttor[0] *= factor_lj;
ttor[1] *= factor_lj;
ttor[2] *= factor_lj;
f[i][0] += fforce[0];
f[i][1] += fforce[1];
f[i][2] += fforce[2];
tor[i][0] += ttor[0];
tor[i][1] += ttor[1];
tor[i][2] += ttor[2];
if (newton_pair || j < nlocal) {
rtor[0] *= factor_lj;
rtor[1] *= factor_lj;
rtor[2] *= factor_lj;
f[j][0] -= fforce[0];
f[j][1] -= fforce[1];
f[j][2] -= fforce[2];
tor[j][0] += rtor[0];
tor[j][1] += rtor[1];
tor[j][2] += rtor[2];
}
if (eflag) evdwl = factor_lj * one_eng;
if (evflag)
ev_tally_xyz(i, j, nlocal, newton_pair, evdwl, 0.0, fforce[0], fforce[1], fforce[2],
-r12[0], -r12[1], -r12[2]);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairYLZ::allocate()
{
allocated = 1;
int np1 = atom->ntypes + 1;
memory->create(setflag, np1, np1, "pair:setflag");
for (int i = 1; i < np1; i++)
for (int j = i; j < np1; j++) setflag[i][j] = 0;
memory->create(cutsq, np1, np1, "pair:cutsq");
memory->create(epsilon, np1, np1, "pair:epsilon");
memory->create(sigma, np1, np1, "pair:sigma");
memory->create(cut, np1, np1, "pair:cut");
memory->create(zeta, np1, np1, "pair:zeta");
memory->create(mu, np1, np1, "pair:mu");
memory->create(beta, np1, np1, "pair:beta");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairYLZ::settings(int narg, char **arg)
{
if (narg != 1) error->all(FLERR, "Illegal pair_style command");
cut_global = utils::numeric(FLERR, arg[0], false, lmp);
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairYLZ::coeff(int narg, char **arg)
{
if (narg < 8 || narg > 8) error->all(FLERR, "Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo, ihi, jlo, jhi;
utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error);
utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error);
double epsilon_one = utils::numeric(FLERR, arg[2], false, lmp);
double sigma_one = utils::numeric(FLERR, arg[3], false, lmp);
double zeta_one = utils::numeric(FLERR, arg[4], false, lmp);
double mu_one = utils::numeric(FLERR, arg[5], false, lmp);
double beta_one = utils::numeric(FLERR, arg[6], false, lmp);
double cut_one = utils::numeric(FLERR, arg[7], false, lmp);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo, i); j <= jhi; j++) {
epsilon[i][j] = epsilon_one;
sigma[i][j] = sigma_one;
cut[i][j] = cut_one;
zeta[i][j] = zeta_one;
mu[i][j] = mu_one;
beta[i][j] = beta_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairYLZ::init_style()
{
avec = (AtomVecEllipsoid *) atom->style_match("ellipsoid");
if (!avec) error->all(FLERR, "Pair style ylz requires atom style ellipsoid");
neighbor->request(this, instance_me);
// check that all atoms are ellipsoids
int flag_all, flag = 0;
const int *ellipsoid = atom->ellipsoid;
const int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; ++i)
if (ellipsoid[i] < 0) flag = 1;
MPI_Allreduce(&flag, &flag_all, 1, MPI_INT, MPI_MAX, world);
if (flag_all) error->all(FLERR, "All atoms must be ellipsoids for pair style ylz");
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairYLZ::init_one(int i, int j)
{
if (setflag[i][j] == 0) {
epsilon[i][j] = mix_energy(epsilon[i][i], epsilon[j][j], sigma[i][i], sigma[j][j]);
sigma[i][j] = mix_distance(sigma[i][i], sigma[j][j]);
cut[i][j] = mix_distance(cut[i][i], cut[j][j]);
}
epsilon[j][i] = epsilon[i][j];
sigma[j][i] = sigma[i][j];
zeta[j][i] = zeta[i][j];
mu[j][i] = mu[i][j];
beta[j][i] = beta[i][j];
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairYLZ::write_restart(FILE *fp)
{
write_restart_settings(fp);
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j], sizeof(int), 1, fp);
if (setflag[i][j]) {
fwrite(&epsilon[i][j], sizeof(double), 1, fp);
fwrite(&sigma[i][j], sizeof(double), 1, fp);
fwrite(&cut[i][j], sizeof(double), 1, fp);
fwrite(&zeta[i][j], sizeof(double), 1, fp);
fwrite(&mu[i][j], sizeof(double), 1, fp);
fwrite(&beta[i][j], sizeof(double), 1, fp);
}
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairYLZ::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (comm->me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error);
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
if (setflag[i][j]) {
if (comm->me == 0) {
utils::sfread(FLERR, &epsilon[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &sigma[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &zeta[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &mu[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &beta[i][j], sizeof(double), 1, fp, nullptr, error);
}
MPI_Bcast(&epsilon[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&sigma[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&zeta[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&mu[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&beta[i][j], 1, MPI_DOUBLE, 0, world);
}
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairYLZ::write_restart_settings(FILE *fp)
{
fwrite(&cut_global, sizeof(double), 1, fp);
fwrite(&offset_flag, sizeof(int), 1, fp);
fwrite(&mix_flag, sizeof(int), 1, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairYLZ::read_restart_settings(FILE *fp)
{
if (comm->me == 0) {
utils::sfread(FLERR, &cut_global, sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &offset_flag, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &mix_flag, sizeof(int), 1, fp, nullptr, error);
}
MPI_Bcast(&cut_global, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&offset_flag, 1, MPI_INT, 0, world);
MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world);
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void PairYLZ::write_data(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
fprintf(fp, "%d %g %g %g %g %g %g\n", i, epsilon[i][i], sigma[i][i], cut[i][i], zeta[i][i],
mu[i][i], beta[i][i]);
}
/* ----------------------------------------------------------------------
proc 0 writes all pairs to data file
------------------------------------------------------------------------- */
void PairYLZ::write_data_all(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
for (int j = i; j <= atom->ntypes; j++)
fprintf(fp, "%d %d %g %g %g %g %g %g\n", i, j, epsilon[i][i], sigma[i][i], cut[i][j],
zeta[i][j], mu[i][j], beta[i][j]);
}
/* ----------------------------------------------------------------------
compute analytic energy, force (fforce), and torque (ttor & rtor)
based on rotation matrices a
if newton is off, rtor is not calculated for ghost atoms
------------------------------------------------------------------------- */
double PairYLZ::ylz_analytic(const int i, const int j, double a1[3][3], double a2[3][3],
double *r12, const double rsq, double *fforce, double *ttor,
double *rtor)
{
int *type = atom->type;
int newton_pair = force->newton_pair;
int nlocal = atom->nlocal;
double r12hat[3];
MathExtra::normalize3(r12, r12hat);
double r = sqrt(rsq);
double ni1[3], nj1[3], dphi_drhat[3], dUdrhat[3], dUdni1[3], dUdnj1[3];
double dphi_dni1[3], dphi_dnj1[3];
double t, t1, t2, t4, cos_t, U, uR, uA, dUdr, dUdphi;
const double energy_well = epsilon[type[i]][type[j]];
const double rmin = MY_TWOBYSIXTH * sigma[type[i]][type[j]];
const double rcut = cut[type[i]][type[j]];
const double zt = zeta[type[i]][type[j]];
const double muu = mu[type[i]][type[j]];
const double sint = beta[type[i]][type[j]];
ni1[0] = a1[0][0];
ni1[1] = a1[0][1];
ni1[2] = a1[0][2];
nj1[0] = a2[0][0];
nj1[1] = a2[0][1];
nj1[2] = a2[0][2];
const double ninj = MathExtra::dot3(ni1, nj1);
const double ni1rhat = MathExtra::dot3(ni1, r12hat);
const double nj1rhat = MathExtra::dot3(nj1, r12hat);
const double a = ninj + (sint - ni1rhat) * (sint + nj1rhat) - 2.0 * sint * sint;
const double phi = 1.0 + (a - 1.0) * muu;
dphi_drhat[0] = muu * ((sint - ni1rhat) * nj1[0] - ni1[0] * (sint + nj1rhat));
dphi_drhat[1] = muu * ((sint - ni1rhat) * nj1[1] - ni1[1] * (sint + nj1rhat));
dphi_drhat[2] = muu * ((sint - ni1rhat) * nj1[2] - ni1[2] * (sint + nj1rhat));
dphi_dni1[0] = muu * (nj1[0] - r12hat[0] * (sint + nj1rhat));
dphi_dni1[1] = muu * (nj1[1] - r12hat[1] * (sint + nj1rhat));
dphi_dni1[2] = muu * (nj1[2] - r12hat[2] * (sint + nj1rhat));
dphi_dnj1[0] = muu * (ni1[0] + r12hat[0] * (sint - ni1rhat));
dphi_dnj1[1] = muu * (ni1[1] + r12hat[1] * (sint - ni1rhat));
dphi_dnj1[2] = muu * (ni1[2] + r12hat[2] * (sint - ni1rhat));
if (r < rmin) {
t = rmin / r;
t2 = t * t;
t4 = t2 * t2;
uR = (t4 - 2.0 * t2) * energy_well;
U = uR + (1.0 - phi) * energy_well;
dUdr = 4.0 * (t2 - t4) / r * energy_well;
dUdphi = -energy_well;
} else {
t = MY_PI2 * (r - rmin) / (rcut - rmin);
cos_t = cos(t);
t1 = cos_t;
for (int k = 1; k <= 2 * zt - 2; k++) t1 *= cos_t; // get cos()^(2zt-1)
uA = -energy_well * t1 * cos_t;
U = uA * phi;
dUdr = MY_4PI / (rcut - rmin) * (t1) *sin(t) * phi * energy_well;
dUdphi = uA;
}
dUdrhat[0] = dUdphi * dphi_drhat[0];
dUdrhat[1] = dUdphi * dphi_drhat[1];
dUdrhat[2] = dUdphi * dphi_drhat[2];
double dUdrhatrhat = MathExtra::dot3(dUdrhat, r12hat);
fforce[0] = dUdr * r12hat[0] + (dUdrhat[0] - dUdrhatrhat * r12hat[0]) / r;
fforce[1] = dUdr * r12hat[1] + (dUdrhat[1] - dUdrhatrhat * r12hat[1]) / r;
fforce[2] = dUdr * r12hat[2] + (dUdrhat[2] - dUdrhatrhat * r12hat[2]) / r;
// torque i
dUdni1[0] = dUdphi * dphi_dni1[0];
dUdni1[1] = dUdphi * dphi_dni1[1];
dUdni1[2] = dUdphi * dphi_dni1[2];
MathExtra::cross3(dUdni1, ni1, ttor); //minus sign is replace by swapping ni1 and dUdni1
if (newton_pair || j < nlocal) {
dUdnj1[0] = dUdphi * dphi_dnj1[0];
dUdnj1[1] = dUdphi * dphi_dnj1[1];
dUdnj1[2] = dUdphi * dphi_dnj1[2];
MathExtra::cross3(dUdnj1, nj1, rtor); //minus sign is replace by swapping ni1 and dUdni1
}
return U;
}