434 lines
14 KiB
C++
434 lines
14 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Andres Jaramillo-Botero
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "mpi.h"
|
|
#include "math.h"
|
|
#include "string.h"
|
|
#include "stdlib.h"
|
|
#include "fix_langevin_eff.h"
|
|
#include "math_extra.h"
|
|
#include "atom.h"
|
|
#include "force.h"
|
|
#include "update.h"
|
|
#include "modify.h"
|
|
#include "compute.h"
|
|
#include "domain.h"
|
|
#include "region.h"
|
|
#include "respa.h"
|
|
#include "comm.h"
|
|
#include "input.h"
|
|
#include "variable.h"
|
|
#include "random_mars.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
#include "group.h"
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace FixConst;
|
|
|
|
enum{NOBIAS,BIAS};
|
|
enum{CONSTANT,EQUAL,ATOM};
|
|
|
|
#define SINERTIA 0.4 // moment of inertia prefactor for sphere
|
|
#define EINERTIA 0.2 // moment of inertia prefactor for ellipsoid
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixLangevinEff::FixLangevinEff(LAMMPS *lmp, int narg, char **arg) :
|
|
FixLangevin(lmp, narg, arg)
|
|
{
|
|
erforcelangevin = NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
FixLangevinEff::~FixLangevinEff()
|
|
{
|
|
memory->destroy(erforcelangevin);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixLangevinEff::post_force(int vflag)
|
|
{
|
|
if (tallyflag) post_force_tally();
|
|
else post_force_no_tally();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixLangevinEff::post_force_no_tally()
|
|
{
|
|
double gamma1,gamma2,t_target;
|
|
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double *ervel = atom->ervel;
|
|
double *erforce = atom->erforce;
|
|
int *spin = atom->spin;
|
|
int *type = atom->type;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
double mefactor = domain->dimension/4.0;
|
|
double sqrtmefactor = sqrt(mefactor);
|
|
|
|
double delta = update->ntimestep - update->beginstep;
|
|
delta /= update->endstep - update->beginstep;
|
|
|
|
// set current t_target and t_sqrt
|
|
// if variable temp, evaluate variable, wrap with clear/add
|
|
// reallocate tforce array if necessary
|
|
|
|
if (tstyle == CONSTANT) {
|
|
t_target = t_start + delta * (t_stop-t_start);
|
|
tsqrt = sqrt(t_target);
|
|
} else {
|
|
modify->clearstep_compute();
|
|
if (tstyle == EQUAL) {
|
|
t_target = input->variable->compute_equal(tvar);
|
|
if (t_target < 0.0)
|
|
error->one(FLERR,"Fix langevin/eff variable returned negative temperature");
|
|
tsqrt = sqrt(t_target);
|
|
} else {
|
|
if (nlocal > maxatom2) {
|
|
maxatom2 = atom->nmax;
|
|
memory->destroy(tforce);
|
|
memory->create(tforce,maxatom2,"langevin/eff:tforce");
|
|
}
|
|
input->variable->compute_atom(tvar,igroup,tforce,1,0);
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit)
|
|
if (tforce[i] < 0.0)
|
|
error->one(FLERR,
|
|
"Fix langevin/eff variable returned negative temperature");
|
|
}
|
|
modify->addstep_compute(update->ntimestep + 1);
|
|
}
|
|
|
|
// apply damping and thermostat to atoms in group
|
|
// for BIAS:
|
|
// calculate temperature since some computes require temp
|
|
// computed on current nlocal atoms to remove bias
|
|
// test v = 0 since some computes mask non-participating atoms via v = 0
|
|
// and added force has extra term not multiplied by v = 0
|
|
// for ZEROFLAG:
|
|
// sum random force over all atoms in group
|
|
// subtract sum/particles from each atom in group
|
|
|
|
double fran[4],fsum[4],fsumall[4];
|
|
fsum[0] = fsum[1] = fsum[2] = fsum[3] = 0.0;
|
|
|
|
int particles = group->count(igroup);
|
|
if (zeroflag) {
|
|
if (particles == 0)
|
|
error->all(FLERR,"Cannot zero Langevin force of 0 atoms/electrons");
|
|
}
|
|
|
|
// find number of electrons in group
|
|
int dof,fix_dof;
|
|
dof = domain->dimension * particles;
|
|
fix_dof = 0;
|
|
for (int i = 0; i < modify->nfix; i++)
|
|
fix_dof += modify->fix[i]->dof(igroup);
|
|
|
|
// extra_dof = domain->dimension
|
|
dof -= domain->dimension + fix_dof;
|
|
|
|
int one = 0;
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
if (abs(spin[i])==1) one++;
|
|
}
|
|
int nelectrons, dofelectrons, dofnuclei;
|
|
MPI_Allreduce(&one,&nelectrons,1,MPI_INT,MPI_SUM,world);
|
|
dofelectrons = domain->dimension*nelectrons;
|
|
dofnuclei = dof-dofelectrons;
|
|
|
|
// thermal partitioning factor between nuclei and electrons
|
|
// extra dof from electron size
|
|
double gfactor3=(double) (dof+nelectrons)/dofnuclei;
|
|
|
|
if (tbiasflag == NOBIAS) {
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
if (tstyle == ATOM) tsqrt = sqrt(tforce[i]);
|
|
gamma1 = gfactor1[type[i]] * gfactor3;
|
|
gamma2 = gfactor2[type[i]] * tsqrt;
|
|
fran[0] = gamma2*(random->uniform()-0.5);
|
|
fran[1] = gamma2*(random->uniform()-0.5);
|
|
fran[2] = gamma2*(random->uniform()-0.5);
|
|
f[i][0] += gamma1*v[i][0] + fran[0];
|
|
f[i][1] += gamma1*v[i][1] + fran[1];
|
|
f[i][2] += gamma1*v[i][2] + fran[2];
|
|
fsum[0] += fran[0];
|
|
fsum[1] += fran[1];
|
|
fsum[2] += fran[2];
|
|
if (abs(spin[i])==1) {
|
|
fran[3] = sqrtmefactor*gamma2*(random->uniform()-0.5);
|
|
erforce[i] += mefactor*gamma1*ervel[i]+fran[3];
|
|
fsum[3] += fran[3];
|
|
}
|
|
}
|
|
}
|
|
} else if (tbiasflag == BIAS) {
|
|
temperature->compute_scalar();
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
if (tstyle == ATOM) tsqrt = sqrt(tforce[i]);
|
|
gamma1 = gfactor1[type[i]] * gfactor3;
|
|
gamma2 = gfactor2[type[i]] * tsqrt;
|
|
temperature->remove_bias(i,v[i]);
|
|
fran[0] = gamma2*(random->uniform()-0.5);
|
|
fran[1] = gamma2*(random->uniform()-0.5);
|
|
fran[2] = gamma2*(random->uniform()-0.5);
|
|
if (v[i][0] != 0.0)
|
|
f[i][0] += gamma1*v[i][0] + fran[0];
|
|
if (v[i][1] != 0.0)
|
|
f[i][1] += gamma1*v[i][1] + fran[1];
|
|
if (v[i][2] != 0.0)
|
|
f[i][2] += gamma1*v[i][2] + fran[2];
|
|
fsum[0] += fran[0];
|
|
fsum[1] += fran[1];
|
|
fsum[2] += fran[2];
|
|
if (abs(spin[i])==1) {
|
|
fran[3] = sqrtmefactor*gamma2*(random->uniform()-0.5);
|
|
if (ervel[i] != 0.0) erforce[i] += mefactor*gamma1*ervel[i]+fran[3];
|
|
fsum[3] += fran[3];
|
|
}
|
|
temperature->restore_bias(i,v[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// set total force to zero
|
|
|
|
if (zeroflag) {
|
|
MPI_Allreduce(fsum,fsumall,3,MPI_DOUBLE,MPI_SUM,world);
|
|
fsumall[0] /= particles;
|
|
fsumall[1] /= particles;
|
|
fsumall[2] /= particles;
|
|
fsumall[3] /= nelectrons;
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
f[i][0] -= fsumall[0];
|
|
f[i][1] -= fsumall[1];
|
|
f[i][2] -= fsumall[2];
|
|
if (abs(spin[i])==1) erforce[i] -= fsumall[3];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void FixLangevinEff::post_force_tally()
|
|
{
|
|
double gamma1,gamma2,t_target;
|
|
|
|
// reallocate flangevin and erforcelangevin if necessary
|
|
|
|
if (atom->nlocal > maxatom1) {
|
|
memory->destroy(flangevin);
|
|
memory->destroy(erforcelangevin);
|
|
maxatom1 = atom->nmax;
|
|
memory->create(flangevin,maxatom1,3,"langevin/eff:flangevin");
|
|
memory->create(erforcelangevin,maxatom1,"langevin/eff:erforcelangevin");
|
|
}
|
|
|
|
double **v = atom->v;
|
|
double **f = atom->f;
|
|
double *erforce = atom->erforce;
|
|
double *ervel = atom->ervel;
|
|
int *spin = atom->spin;
|
|
double mefactor = domain->dimension/4.0;
|
|
double sqrtmefactor = sqrt(mefactor);
|
|
|
|
int *type = atom->type;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
double delta = update->ntimestep - update->beginstep;
|
|
delta /= update->endstep - update->beginstep;
|
|
|
|
// set current t_target and t_sqrt
|
|
// if variable temp, evaluate variable, wrap with clear/add
|
|
// reallocate tforce array if necessary
|
|
|
|
if (tstyle == CONSTANT) {
|
|
t_target = t_start + delta * (t_stop-t_start);
|
|
tsqrt = sqrt(t_target);
|
|
} else {
|
|
modify->clearstep_compute();
|
|
if (tstyle == EQUAL) {
|
|
t_target = input->variable->compute_equal(tvar);
|
|
if (t_target < 0.0)
|
|
error->one(FLERR,"Fix langevin/eff variable returned negative temperature");
|
|
tsqrt = sqrt(t_target);
|
|
} else {
|
|
if (nlocal > maxatom2) {
|
|
maxatom2 = atom->nmax;
|
|
memory->destroy(tforce);
|
|
memory->create(tforce,maxatom2,"langevin/eff:tforce");
|
|
}
|
|
input->variable->compute_atom(tvar,igroup,tforce,1,0);
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit)
|
|
if (tforce[i] < 0.0)
|
|
error->one(FLERR,
|
|
"Fix langevin/eff variable returned negative temperature");
|
|
}
|
|
modify->addstep_compute(update->ntimestep + 1);
|
|
}
|
|
|
|
// apply damping and thermostat to appropriate atoms
|
|
// for BIAS:
|
|
// calculate temperature since some computes require temp
|
|
// computed on current nlocal atoms to remove bias
|
|
// test v = 0 since some computes mask non-participating atoms via v = 0
|
|
// and added force has extra term not multiplied by v = 0
|
|
|
|
int particles = group->count(igroup);
|
|
if (zeroflag) {
|
|
if (particles == 0)
|
|
error->all(FLERR,"Cannot zero Langevin force of 0 atoms/electrons");
|
|
}
|
|
|
|
// find number of electrons in group
|
|
int dof,fix_dof;
|
|
dof = domain->dimension * particles;
|
|
fix_dof = 0;
|
|
for (int i = 0; i < modify->nfix; i++)
|
|
fix_dof += modify->fix[i]->dof(igroup);
|
|
|
|
// extra_dof = domain->dimension
|
|
dof -= domain->dimension + fix_dof;
|
|
|
|
int one = 0;
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
if (abs(spin[i])==1) one++;
|
|
}
|
|
int nelectrons, dofelectrons, dofnuclei;
|
|
MPI_Allreduce(&one,&nelectrons,1,MPI_INT,MPI_SUM,world);
|
|
dofelectrons = domain->dimension*nelectrons;
|
|
dofnuclei = dof-dofelectrons;
|
|
|
|
// thermal partitioning factor between nuclei and electrons
|
|
// extra dof from electron size
|
|
double gfactor3=(double) (dof+nelectrons)/dofnuclei;
|
|
|
|
if (tbiasflag == NOBIAS) {
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
if (tstyle == ATOM) tsqrt = sqrt(tforce[i]);
|
|
gamma1 = gfactor1[type[i]] * gfactor3;
|
|
gamma2 = gfactor2[type[i]] * tsqrt;
|
|
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
|
|
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
|
|
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
|
|
f[i][0] += flangevin[i][0];
|
|
f[i][1] += flangevin[i][1];
|
|
f[i][2] += flangevin[i][2];
|
|
if (abs(spin[i])==1) {
|
|
erforcelangevin[i] = mefactor*gamma1*ervel[i]+sqrtmefactor*gamma2*(random->uniform()-0.5);
|
|
erforce[i] += erforcelangevin[i];
|
|
}
|
|
}
|
|
}
|
|
} else if (tbiasflag == BIAS) {
|
|
temperature->compute_scalar();
|
|
for (int i = 0; i < nlocal; i++) {
|
|
if (mask[i] & groupbit) {
|
|
if (tstyle == ATOM) tsqrt = sqrt(tforce[i]);
|
|
gamma1 = gfactor1[type[i]] * gfactor3;
|
|
gamma2 = gfactor2[type[i]] * tsqrt;
|
|
temperature->remove_bias(i,v[i]);
|
|
flangevin[i][0] = gamma1*v[i][0] + gamma2*(random->uniform()-0.5);
|
|
flangevin[i][1] = gamma1*v[i][1] + gamma2*(random->uniform()-0.5);
|
|
flangevin[i][2] = gamma1*v[i][2] + gamma2*(random->uniform()-0.5);
|
|
if (v[i][0] != 0.0) f[i][0] += flangevin[i][0];
|
|
else flangevin[i][0] = 0.0;
|
|
if (v[i][1] != 0.0) f[i][1] += flangevin[i][1];
|
|
else flangevin[i][1] = 0.0;
|
|
if (v[i][2] != 0.0) f[i][2] += flangevin[i][2];
|
|
else flangevin[i][2] = 0.0;
|
|
if (abs(spin[i])==1) {
|
|
erforcelangevin[i] = mefactor*gamma1*ervel[i]+sqrtmefactor*gamma2*(random->uniform()-0.5);
|
|
if (ervel[i] != 0.0) erforce[i] += erforcelangevin[i];
|
|
else erforcelangevin[i] = 0.0;
|
|
}
|
|
temperature->restore_bias(i,v[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
tally energy transfer to thermal reservoir
|
|
------------------------------------------------------------------------- */
|
|
|
|
void FixLangevinEff::end_of_step()
|
|
{
|
|
if (!tallyflag) return;
|
|
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
int *spin = atom->spin;
|
|
|
|
energy_onestep = 0.0;
|
|
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
energy_onestep += flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] +
|
|
flangevin[i][2]*v[i][2];
|
|
if (abs(spin[i])==1) energy_onestep += erforcelangevin[i];
|
|
}
|
|
energy += energy_onestep*update->dt;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double FixLangevinEff::compute_scalar()
|
|
{
|
|
if (!tallyflag || flangevin == NULL || erforcelangevin == NULL) return 0.0;
|
|
|
|
// capture the very first energy transfer to thermal reservoir
|
|
|
|
double **v = atom->v;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
int *spin = atom->spin;
|
|
|
|
if (update->ntimestep == update->beginstep) {
|
|
energy_onestep = 0.0;
|
|
for (int i = 0; i < nlocal; i++)
|
|
if (mask[i] & groupbit) {
|
|
energy_onestep += flangevin[i][0]*v[i][0] + flangevin[i][1]*v[i][1] +
|
|
flangevin[i][2]*v[i][2];
|
|
if (abs(spin[i])==1) energy_onestep += erforcelangevin[i];
|
|
}
|
|
energy = 0.5*energy_onestep*update->dt;
|
|
}
|
|
|
|
double energy_me = energy - 0.5*energy_onestep*update->dt;
|
|
|
|
double energy_all;
|
|
MPI_Allreduce(&energy_me,&energy_all,1,MPI_DOUBLE,MPI_SUM,world);
|
|
return -energy_all;
|
|
}
|