Files
lammps/src/MLIAP/compute_mliap.cpp
Axel Kohlmeyer e459ee8a58 whitespace fixes
2020-07-07 20:25:59 -04:00

391 lines
12 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <cstring>
#include <cstdlib>
#include "mliap_model_linear.h"
#include "mliap_model_quadratic.h"
#include "mliap_descriptor_snap.h"
#include "compute_mliap.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "force.h"
#include "pair.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
enum{SCALAR,VECTOR,ARRAY};
ComputeMLIAP::ComputeMLIAP(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), list(NULL), mliap(NULL),
gradforce(NULL), mliapall(NULL), map(NULL),
descriptors(NULL), gamma_row_index(NULL), gamma_col_index(NULL),
gamma(NULL), egradient(NULL), model(NULL), descriptor(NULL)
{
array_flag = 1;
extarray = 0;
if (narg < 4)
error->all(FLERR,"Illegal compute mliap command");
// set flags for required keywords
int modelflag = 0;
int descriptorflag = 0;
// process keywords
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"model") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute mliap command");
if (strcmp(arg[iarg+1],"linear") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal compute mliap command");
int ntmp1 = atoi(arg[iarg+2]);
int ntmp2 = atoi(arg[iarg+3]);
model = new MLIAPModelLinear(lmp,ntmp1,ntmp2);
iarg += 4;
} else if (strcmp(arg[iarg+1],"quadratic") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal compute mliap command");
int ntmp1 = atoi(arg[iarg+2]);
int ntmp2 = atoi(arg[iarg+3]);
model = new MLIAPModelQuadratic(lmp,ntmp1,ntmp2);
iarg += 4;
} else error->all(FLERR,"Illegal compute mliap command");
modelflag = 1;
} else if (strcmp(arg[iarg],"descriptor") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute mliap command");
if (strcmp(arg[iarg+1],"sna") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal compute mliap command");
descriptor = new MLIAPDescriptorSNAP(lmp,arg[iarg+2]);
iarg += 3;
} else error->all(FLERR,"Illegal compute mliap command");
descriptorflag = 1;
} else
error->all(FLERR,"Illegal compute mliap command");
}
if (modelflag == 0 || descriptorflag == 0)
error->all(FLERR,"Illegal compute_style command");
ndescriptors = descriptor->ndescriptors;
nparams = model->nparams;
nelements = model->nelements;
gamma_nnz = model->get_gamma_nnz();
ndims_force = 3;
ndims_virial = 6;
yoffset = nparams*nelements;
zoffset = 2*yoffset;
natoms = atom->natoms;
size_array_rows = 1+ndims_force*natoms+ndims_virial;
size_array_cols = nparams*nelements+1;
lastcol = size_array_cols-1;
size_gradforce = ndims_force*nparams*nelements;
nmax = 0;
gamma_max = 0;
// create a minimal map, placeholder for more general map
memory->create(map,atom->ntypes+1,"compute_mliap:map");
for (int i = 1; i <= atom->ntypes; i++)
map[i] = i-1;
}
/* ---------------------------------------------------------------------- */
ComputeMLIAP::~ComputeMLIAP()
{
memory->destroy(mliap);
memory->destroy(mliapall);
memory->destroy(gradforce);
memory->destroy(map);
memory->destroy(descriptors);
memory->destroy(gamma_row_index);
memory->destroy(gamma_col_index);
memory->destroy(gamma);
memory->destroy(egradient);
delete model;
delete descriptor;
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::init()
{
if (force->pair == NULL)
error->all(FLERR,"Compute mliap requires a pair style be defined");
if (descriptor->cutmax > force->pair->cutforce)
error->all(FLERR,"Compute mliap cutoff is longer than pairwise cutoff");
// need an occasional full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style,"mliap") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute mliap");
// initialize model and descriptor
model->init();
descriptor->init();
// consistency checks
if (descriptor->ndescriptors != model->ndescriptors)
error->all(FLERR,"Incompatible model and descriptor definitions");
if (descriptor->nelements != model->nelements)
error->all(FLERR,"Incompatible model and descriptor definitions");
if (nelements != atom->ntypes)
error->all(FLERR,"nelements must equal ntypes");
// allocate memory for global array
memory->create(mliap,size_array_rows,size_array_cols,
"mliap:mliap");
memory->create(mliapall,size_array_rows,size_array_cols,
"mliap:mliapall");
array = mliapall;
memory->create(egradient,nelements*nparams,"ComputeMLIAP:egradient");
// find compute for reference energy
std::string id_pe = std::string("thermo_pe");
int ipe = modify->find_compute(id_pe);
if (ipe == -1)
error->all(FLERR,"compute thermo_pe does not exist.");
c_pe = modify->compute[ipe];
// add compute for reference virial tensor
std::string id_virial = std::string("mliap_press");
std::string pcmd = id_virial + " all pressure NULL virial";
modify->add_compute(pcmd);
int ivirial = modify->find_compute(id_virial);
if (ivirial == -1)
error->all(FLERR,"compute mliap_press does not exist.");
c_virial = modify->compute[ivirial];
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::compute_array()
{
int ntotal = atom->nlocal + atom->nghost;
invoked_array = update->ntimestep;
// grow gradforce array if necessary
if (atom->nmax > nmax) {
memory->destroy(gradforce);
nmax = atom->nmax;
memory->create(gradforce,nmax,size_gradforce,
"mliap:gradforce");
}
// clear gradforce array
for (int i = 0; i < ntotal; i++)
for (int j = 0; j < size_gradforce; j++) {
gradforce[i][j] = 0.0;
}
// clear global array
for (int irow = 0; irow < size_array_rows; irow++)
for (int jcol = 0; jcol < size_array_cols; jcol++)
mliap[irow][jcol] = 0.0;
// invoke full neighbor list (will copy or build if necessary)
neighbor->build_one(list);
if (gamma_max < list->inum) {
memory->grow(descriptors,list->inum,ndescriptors,"ComputeMLIAP:descriptors");
memory->grow(gamma_row_index,list->inum,gamma_nnz,"ComputeMLIAP:gamma_row_index");
memory->grow(gamma_col_index,list->inum,gamma_nnz,"ComputeMLIAP:gamma_col_index");
memory->grow(gamma,list->inum,gamma_nnz,"ComputeMLIAP:gamma");
gamma_max = list->inum;
}
// compute descriptors
descriptor->compute_descriptors(map, list, descriptors);
// calculate descriptor contributions to parameter gradients
// and gamma = double gradient w.r.t. parameters and descriptors
// i.e. gamma = d2E/dsigma_l.dB_k
// sigma_l is a parameter and B_k is a descriptor of atom i
// for SNAP, this is a sparse natoms*nparams*ndescriptors matrix,
// but in general it could be fully dense.
model->param_gradient(map, list, descriptors, gamma_row_index,
gamma_col_index, gamma, egradient);
// calculate descriptor gradient contributions to parameter gradients
descriptor->compute_gradients(map, list, gamma_nnz, gamma_row_index,
gamma_col_index, gamma, gradforce,
yoffset, zoffset);
// accumulate descriptor gradient contributions to global array
for (int ielem = 0; ielem < nelements; ielem++) {
const int elemoffset = nparams*ielem;
for (int jparam = 0; jparam < nparams; jparam++) {
int irow = 1;
for (int i = 0; i < ntotal; i++) {
double *gradforcei = gradforce[i]+elemoffset;
int iglobal = atom->tag[i];
int irow = 3*(iglobal-1)+1;
mliap[irow][jparam+elemoffset] += gradforcei[jparam];
mliap[irow+1][jparam+elemoffset] += gradforcei[jparam+yoffset];
mliap[irow+2][jparam+elemoffset] += gradforcei[jparam+zoffset];
}
}
}
// copy forces to global array
for (int i = 0; i < atom->nlocal; i++) {
int iglobal = atom->tag[i];
int irow = 3*(iglobal-1)+1;
mliap[irow][lastcol] = atom->f[i][0];
mliap[irow+1][lastcol] = atom->f[i][1];
mliap[irow+2][lastcol] = atom->f[i][2];
}
// accumulate bispectrum virial contributions to global array
dbdotr_compute();
// copy energy gradient contributions to global array
for (int ielem = 0; ielem < nelements; ielem++) {
const int elemoffset = nparams*ielem;
for (int jparam = 0; jparam < nparams; jparam++)
mliap[0][jparam+elemoffset] = egradient[jparam+elemoffset];
}
// sum up over all processes
MPI_Allreduce(&mliap[0][0],&mliapall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
// copy energy to last column
int irow = 0;
double reference_energy = c_pe->compute_scalar();
mliapall[irow++][lastcol] = reference_energy;
// copy virial stress to last column
// switch to Voigt notation
c_virial->compute_vector();
irow += 3*natoms;
mliapall[irow++][lastcol] = c_virial->vector[0];
mliapall[irow++][lastcol] = c_virial->vector[1];
mliapall[irow++][lastcol] = c_virial->vector[2];
mliapall[irow++][lastcol] = c_virial->vector[5];
mliapall[irow++][lastcol] = c_virial->vector[4];
mliapall[irow++][lastcol] = c_virial->vector[3];
}
/* ----------------------------------------------------------------------
compute global virial contributions via summing r_i.dB^j/dr_i over
own & ghost atoms
------------------------------------------------------------------------- */
void ComputeMLIAP::dbdotr_compute()
{
double **x = atom->x;
int irow0 = 1+ndims_force*natoms;
// sum over bispectrum contributions to forces
// on all particles including ghosts
int nall = atom->nlocal + atom->nghost;
for (int i = 0; i < nall; i++)
for (int ielem = 0; ielem < nelements; ielem++) {
const int elemoffset = nparams*ielem;
double *gradforcei = gradforce[i]+elemoffset;
for (int jparam = 0; jparam < nparams; jparam++) {
double dbdx = gradforcei[jparam];
double dbdy = gradforcei[jparam+yoffset];
double dbdz = gradforcei[jparam+zoffset];
int irow = irow0;
mliap[irow++][jparam+elemoffset] += dbdx*x[i][0];
mliap[irow++][jparam+elemoffset] += dbdy*x[i][1];
mliap[irow++][jparam+elemoffset] += dbdz*x[i][2];
mliap[irow++][jparam+elemoffset] += dbdz*x[i][1];
mliap[irow++][jparam+elemoffset] += dbdz*x[i][0];
mliap[irow++][jparam+elemoffset] += dbdy*x[i][0];
}
}
}
/* ----------------------------------------------------------------------
memory usage
------------------------------------------------------------------------- */
double ComputeMLIAP::memory_usage()
{
double bytes = size_array_rows*size_array_cols *
sizeof(double); // mliap
bytes += size_array_rows*size_array_cols *
sizeof(double); // mliapall
bytes += nmax*size_gradforce * sizeof(double); // gradforce
int n = atom->ntypes+1;
bytes += n*sizeof(int); // map
return bytes;
}