544 lines
16 KiB
C++
544 lines
16 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
This software is distributed under the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
#include "pair_eam_cd_omp.h"
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
|
|
#include "suffix.h"
|
|
using namespace LAMMPS_NS;
|
|
|
|
// This is for debugging purposes. The ASSERT() macro is used in the code to check
|
|
// if everything runs as expected. Change this to #if 0 if you don't need the checking.
|
|
#if 0
|
|
#define ASSERT(cond) ((!(cond)) ? my_failure(error,__FILE__,__LINE__) : my_noop())
|
|
|
|
inline void my_noop() {}
|
|
inline void my_failure(Error* error, const char* file, int line) {
|
|
char str[1024];
|
|
sprintf(str,"Assertion failure: File %s, line %i", file, line);
|
|
error->one(FLERR,str);
|
|
}
|
|
#else
|
|
#define ASSERT(cond)
|
|
#endif
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairEAMCDOMP::PairEAMCDOMP(LAMMPS *lmp, int _cdeamVersion) :
|
|
PairEAM(lmp), PairEAMCD(lmp,_cdeamVersion), ThrOMP(lmp, THR_PAIR)
|
|
{
|
|
suffix_flag |= Suffix::OMP;
|
|
respa_enable = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairEAMCDOMP::compute(int eflag, int vflag)
|
|
{
|
|
if (eflag || vflag) {
|
|
ev_setup(eflag,vflag);
|
|
} else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
|
|
|
|
const int nall = atom->nlocal + atom->nghost;
|
|
const int nthreads = comm->nthreads;
|
|
const int inum = list->inum;
|
|
|
|
// grow energy and fp arrays if necessary
|
|
// need to be atom->nmax in length
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(rho);
|
|
memory->destroy(rhoB);
|
|
memory->destroy(D_values);
|
|
memory->destroy(fp);
|
|
nmax = atom->nmax;
|
|
memory->create(rho,nthreads*nmax,"pair:rho");
|
|
memory->create(rhoB,nthreads*nmax,"pair:mu");
|
|
memory->create(D_values,nthreads*nmax,"pair:D_values");
|
|
memory->create(fp,nmax,"pair:fp");
|
|
}
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel default(none) shared(eflag,vflag)
|
|
#endif
|
|
{
|
|
int ifrom, ito, tid;
|
|
|
|
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
|
|
ThrData *thr = fix->get_thr(tid);
|
|
thr->timer(Timer::START);
|
|
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
|
|
|
|
if (force->newton_pair)
|
|
thr->init_cdeam(nall, rho, rhoB, D_values);
|
|
else
|
|
thr->init_cdeam(atom->nlocal, rho, rhoB, D_values);
|
|
|
|
switch (cdeamVersion) {
|
|
|
|
case 1:
|
|
|
|
if (evflag) {
|
|
if (eflag) {
|
|
if (force->newton_pair) eval<1,1,1,1>(ifrom, ito, thr);
|
|
else eval<1,1,0,1>(ifrom, ito, thr);
|
|
} else {
|
|
if (force->newton_pair) eval<1,0,1,1>(ifrom, ito, thr);
|
|
else eval<1,0,0,1>(ifrom, ito, thr);
|
|
}
|
|
} else {
|
|
if (force->newton_pair) eval<0,0,1,1>(ifrom, ito, thr);
|
|
else eval<0,0,0,1>(ifrom, ito, thr);
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
|
|
if (evflag) {
|
|
if (eflag) {
|
|
if (force->newton_pair) eval<1,1,1,2>(ifrom, ito, thr);
|
|
else eval<1,1,0,2>(ifrom, ito, thr);
|
|
} else {
|
|
if (force->newton_pair) eval<1,0,1,2>(ifrom, ito, thr);
|
|
else eval<1,0,0,2>(ifrom, ito, thr);
|
|
}
|
|
} else {
|
|
if (force->newton_pair) eval<0,0,1,2>(ifrom, ito, thr);
|
|
else eval<0,0,0,2>(ifrom, ito, thr);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
#if defined(_OPENMP)
|
|
#pragma omp master
|
|
#endif
|
|
error->all(FLERR,"unsupported eam/cd pair style variant");
|
|
}
|
|
}
|
|
|
|
thr->timer(Timer::PAIR);
|
|
reduce_thr(this, eflag, vflag, thr);
|
|
} // end of omp parallel region
|
|
}
|
|
|
|
template <int EVFLAG, int EFLAG, int NEWTON_PAIR, int CDEAMVERSION>
|
|
void PairEAMCDOMP::eval(int iifrom, int iito, ThrData * const thr)
|
|
{
|
|
int i,j,ii,jj,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
|
|
double rsq,rhoip,rhojp,recip,phi;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
|
|
evdwl = 0.0;
|
|
|
|
const dbl3_t * _noalias const x = (dbl3_t *) atom->x[0];
|
|
dbl3_t * _noalias const f = (dbl3_t *) thr->get_f()[0];
|
|
double * const rho_t = thr->get_rho();
|
|
double * const rhoB_t = thr->get_rhoB();
|
|
double * const D_values_t = thr->get_D_values();
|
|
const int tid = thr->get_tid();
|
|
const int nthreads = comm->nthreads;
|
|
|
|
const int * _noalias const type = atom->type;
|
|
const int nlocal = atom->nlocal;
|
|
const int nall = nlocal + atom->nghost;
|
|
|
|
double fxtmp,fytmp,fztmp;
|
|
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// Stage I
|
|
|
|
// Compute rho and rhoB at each local atom site.
|
|
// Additionally calculate the D_i values here if we are using the one-site formulation.
|
|
// For the two-site formulation we have to calculate the D values in an extra loop (Stage II).
|
|
|
|
for (ii = iifrom; ii < iito; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i].x;
|
|
ytmp = x[i].y;
|
|
ztmp = x[i].z;
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j].x;
|
|
dely = ytmp - x[j].y;
|
|
delz = ztmp - x[j].z;
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
jtype = type[j];
|
|
double r = sqrt(rsq);
|
|
const EAMTableIndex index = radiusToTableIndex(r);
|
|
double localrho = RhoOfR(index, jtype, itype);
|
|
rho_t[i] += localrho;
|
|
if(jtype == speciesB) rhoB_t[i] += localrho;
|
|
if(NEWTON_PAIR || j < nlocal) {
|
|
localrho = RhoOfR(index, itype, jtype);
|
|
rho_t[j] += localrho;
|
|
if(itype == speciesB) rhoB_t[j] += localrho;
|
|
}
|
|
|
|
if(CDEAMVERSION == 1 && itype != jtype) {
|
|
// Note: if the i-j interaction is not concentration dependent (because either
|
|
// i or j are not species A or B) then its contribution to D_i and D_j should
|
|
// be ignored.
|
|
// This if-clause is only required for a ternary.
|
|
if((itype == speciesA && jtype == speciesB)
|
|
|| (jtype == speciesA && itype == speciesB)) {
|
|
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
|
D_values_t[i] += Phi_AB;
|
|
if(NEWTON_PAIR || j < nlocal)
|
|
D_values_t[j] += Phi_AB;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// wait until all threads are done with computation
|
|
sync_threads();
|
|
|
|
// communicate and sum densities
|
|
|
|
if (NEWTON_PAIR) {
|
|
// reduce per thread density
|
|
thr->timer(Timer::PAIR);
|
|
data_reduce_thr(rho, nall, nthreads, 1, tid);
|
|
data_reduce_thr(rhoB, nall, nthreads, 1, tid);
|
|
if (CDEAMVERSION==1)
|
|
data_reduce_thr(D_values, nall, nthreads, 1, tid);
|
|
|
|
// wait until reduction is complete
|
|
sync_threads();
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp master
|
|
#endif
|
|
{ communicationStage = 1;
|
|
comm->reverse_comm_pair(this); }
|
|
|
|
// wait until master thread is done with communication
|
|
sync_threads();
|
|
|
|
} else {
|
|
// reduce per thread density
|
|
thr->timer(Timer::PAIR);
|
|
data_reduce_thr(rho, nlocal, nthreads, 1, tid);
|
|
data_reduce_thr(rhoB, nlocal, nthreads, 1, tid);
|
|
if (CDEAMVERSION==1)
|
|
data_reduce_thr(D_values, nlocal, nthreads, 1, tid);
|
|
|
|
// wait until reduction is complete
|
|
sync_threads();
|
|
}
|
|
|
|
// fp = derivative of embedding energy at each atom
|
|
// phi = embedding energy at each atom
|
|
|
|
for (ii = iifrom; ii < iito; ii++) {
|
|
i = ilist[ii];
|
|
EAMTableIndex index = rhoToTableIndex(rho[i]);
|
|
fp[i] = FPrimeOfRho(index, type[i]);
|
|
if(EFLAG) {
|
|
phi = FofRho(index, type[i]);
|
|
e_tally_thr(this, i, i, nlocal, NEWTON_PAIR, phi, 0.0, thr);
|
|
}
|
|
}
|
|
|
|
// wait until all theads are done with computation
|
|
sync_threads();
|
|
|
|
// Communicate derivative of embedding function and densities
|
|
// and D_values (this for one-site formulation only).
|
|
#if defined(_OPENMP)
|
|
#pragma omp master
|
|
#endif
|
|
{ communicationStage = 2;
|
|
comm->forward_comm_pair(this); }
|
|
|
|
// wait until master thread is done with communication
|
|
sync_threads();
|
|
|
|
|
|
// The electron densities may not drop to zero because then the concentration would no longer be defined.
|
|
// But the concentration is not needed anyway if there is no interaction with another atom, which is the case
|
|
// if the electron density is exactly zero. That's why the following lines have been commented out.
|
|
//
|
|
//for(i = 0; i < nlocal + atom->nghost; i++) {
|
|
// if(rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
|
|
// error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
|
|
//}
|
|
|
|
// Stage II
|
|
// This is only required for the original two-site formulation of the CD-EAM potential.
|
|
|
|
if(CDEAMVERSION == 2) {
|
|
// Compute intermediate value D_i for each atom.
|
|
for (ii = iifrom; ii < iito; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i].x;
|
|
ytmp = x[i].y;
|
|
ztmp = x[i].z;
|
|
itype = type[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// This code line is required for ternary alloys.
|
|
if(itype != speciesA && itype != speciesB) continue;
|
|
|
|
double x_i = rhoB[i] / rho[i]; // Concentration at atom i.
|
|
|
|
for(jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
jtype = type[j];
|
|
if(itype == jtype) continue;
|
|
|
|
// This code line is required for ternary alloys.
|
|
if(jtype != speciesA && jtype != speciesB) continue;
|
|
|
|
delx = xtmp - x[j].x;
|
|
dely = ytmp - x[j].y;
|
|
delz = ztmp - x[j].z;
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
double r = sqrt(rsq);
|
|
const EAMTableIndex index = radiusToTableIndex(r);
|
|
|
|
// The concentration independent part of the cross pair potential.
|
|
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
|
|
|
// Average concentration of two sites
|
|
double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
|
|
|
|
// Calculate derivative of h(x_ij) polynomial function.
|
|
double h_prime = evalHprime(x_ij);
|
|
|
|
D_values_t[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
|
|
if(NEWTON_PAIR || j < nlocal)
|
|
D_values_t[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NEWTON_PAIR) {
|
|
thr->timer(Timer::PAIR);
|
|
data_reduce_thr(D_values, nall, nthreads, 1, tid);
|
|
|
|
// wait until reduction is complete
|
|
sync_threads();
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp master
|
|
#endif
|
|
{ communicationStage = 3;
|
|
comm->reverse_comm_pair(this); }
|
|
|
|
// wait until master thread is done with communication
|
|
sync_threads();
|
|
|
|
} else {
|
|
thr->timer(Timer::PAIR);
|
|
data_reduce_thr(D_values, nlocal, nthreads, 1, tid);
|
|
|
|
// wait until reduction is complete
|
|
sync_threads();
|
|
}
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp master
|
|
#endif
|
|
{ communicationStage = 4;
|
|
comm->forward_comm_pair(this); }
|
|
|
|
// wait until master thread is done with communication
|
|
sync_threads();
|
|
}
|
|
|
|
// Stage III
|
|
|
|
// Compute force acting on each atom.
|
|
for (ii = iifrom; ii < iito; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i].x;
|
|
ytmp = x[i].y;
|
|
ztmp = x[i].z;
|
|
itype = type[i];
|
|
fxtmp = fytmp = fztmp = 0.0;
|
|
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// Concentration at site i
|
|
double x_i = -1.0; // The value -1 indicates: no concentration dependence for all interactions of atom i.
|
|
// It will be replaced by the concentration at site i if atom i is either A or B.
|
|
|
|
double D_i, h_prime_i;
|
|
|
|
// This if-clause is only required for ternary alloys.
|
|
if((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
|
|
|
|
// Compute local concentration at site i.
|
|
x_i = rhoB[i]/rho[i];
|
|
ASSERT(x_i >= 0 && x_i<=1.0);
|
|
|
|
if(CDEAMVERSION == 1) {
|
|
// Calculate derivative of h(x_i) polynomial function.
|
|
h_prime_i = evalHprime(x_i);
|
|
D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
|
|
} else if(CDEAMVERSION == 2) {
|
|
D_i = D_values[i];
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
}
|
|
|
|
for(jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j].x;
|
|
dely = ytmp - x[j].y;
|
|
delz = ztmp - x[j].z;
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if(rsq < cutforcesq) {
|
|
jtype = type[j];
|
|
double r = sqrt(rsq);
|
|
const EAMTableIndex index = radiusToTableIndex(r);
|
|
|
|
// rhoip = derivative of (density at atom j due to atom i)
|
|
// rhojp = derivative of (density at atom i due to atom j)
|
|
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
|
|
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
|
|
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
|
|
rhoip = RhoPrimeOfR(index, itype, jtype);
|
|
rhojp = RhoPrimeOfR(index, jtype, itype);
|
|
fpair = fp[i]*rhojp + fp[j]*rhoip;
|
|
recip = 1.0/r;
|
|
|
|
double x_j = -1; // The value -1 indicates: no concentration dependence for this i-j pair
|
|
// because atom j is not of species A nor B.
|
|
|
|
// This code line is required for ternary alloy.
|
|
if(jtype == speciesA || jtype == speciesB) {
|
|
ASSERT(rho[i] != 0.0);
|
|
ASSERT(rho[j] != 0.0);
|
|
|
|
// Compute local concentration at site j.
|
|
x_j = rhoB[j]/rho[j];
|
|
ASSERT(x_j >= 0 && x_j<=1.0);
|
|
|
|
double D_j;
|
|
if(CDEAMVERSION == 1) {
|
|
// Calculate derivative of h(x_j) polynomial function.
|
|
double h_prime_j = evalHprime(x_j);
|
|
D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
|
|
} else if(CDEAMVERSION == 2) {
|
|
D_j = D_values[j];
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
double t2 = -rhoB[j];
|
|
if(itype == speciesB) t2 += rho[j];
|
|
fpair += D_j * rhoip * t2;
|
|
}
|
|
|
|
// This if-clause is only required for a ternary alloy.
|
|
// Actually we don't need it at all because D_i should be zero anyway if
|
|
// atom i has no concentration dependent interactions (because it is not species A or B).
|
|
if(x_i != -1.0) {
|
|
double t1 = -rhoB[i];
|
|
if(jtype == speciesB) t1 += rho[i];
|
|
fpair += D_i * rhojp * t1;
|
|
}
|
|
|
|
double phip;
|
|
double phi = PhiOfR(index, itype, jtype, recip, phip);
|
|
if(itype == jtype || x_i == -1.0 || x_j == -1.0) {
|
|
// Case of no concentration dependence.
|
|
fpair += phip;
|
|
} else {
|
|
// We have a concentration dependence for the i-j interaction.
|
|
double h;
|
|
if(CDEAMVERSION == 1) {
|
|
// Calculate h(x_i) polynomial function.
|
|
double h_i = evalH(x_i);
|
|
// Calculate h(x_j) polynomial function.
|
|
double h_j = evalH(x_j);
|
|
h = 0.5 * (h_i + h_j);
|
|
} else if(CDEAMVERSION == 2) {
|
|
// Average concentration.
|
|
double x_ij = 0.5 * (x_i + x_j);
|
|
// Calculate h(x_ij) polynomial function.
|
|
h = evalH(x_ij);
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
fpair += h * phip;
|
|
phi *= h;
|
|
}
|
|
|
|
// Divide by r_ij and negate to get forces from gradient.
|
|
fpair /= -r;
|
|
|
|
fxtmp += delx*fpair;
|
|
fytmp += dely*fpair;
|
|
fztmp += delz*fpair;
|
|
if(NEWTON_PAIR || j < nlocal) {
|
|
f[j].x -= delx*fpair;
|
|
f[j].y -= dely*fpair;
|
|
f[j].z -= delz*fpair;
|
|
}
|
|
|
|
if(EFLAG) evdwl = phi;
|
|
if(EVFLAG) ev_tally_thr(this,i,j,nlocal,NEWTON_PAIR,evdwl,0.0,
|
|
fpair,delx,dely,delz,thr);
|
|
}
|
|
}
|
|
f[i].x += fxtmp;
|
|
f[i].y += fytmp;
|
|
f[i].z += fztmp;
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairEAMCDOMP::memory_usage()
|
|
{
|
|
double bytes = memory_usage_thr();
|
|
bytes += PairEAMCD::memory_usage();
|
|
|
|
return bytes;
|
|
}
|