920 lines
30 KiB
C++
920 lines
30 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Stan Moore (SNL), Christian Trott (SNL)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "pair_eam_kokkos.h"
|
|
|
|
#include "atom_kokkos.h"
|
|
#include "atom_masks.h"
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "kokkos.h"
|
|
#include "memory_kokkos.h"
|
|
#include "neigh_list_kokkos.h"
|
|
#include "neigh_request.h"
|
|
#include "neighbor.h"
|
|
#include "pair_kokkos.h"
|
|
|
|
#include <cmath>
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
PairEAMKokkos<DeviceType>::PairEAMKokkos(LAMMPS *lmp) : PairEAM(lmp)
|
|
{
|
|
respa_enable = 0;
|
|
single_enable = 0;
|
|
|
|
kokkosable = 1;
|
|
atomKK = (AtomKokkos *) atom;
|
|
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;
|
|
datamask_read = X_MASK | F_MASK | TYPE_MASK | ENERGY_MASK | VIRIAL_MASK;
|
|
datamask_modify = F_MASK | ENERGY_MASK | VIRIAL_MASK;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
PairEAMKokkos<DeviceType>::~PairEAMKokkos()
|
|
{
|
|
if (!copymode) {
|
|
memoryKK->destroy_kokkos(k_eatom,eatom);
|
|
memoryKK->destroy_kokkos(k_vatom,vatom);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
|
|
{
|
|
eflag = eflag_in;
|
|
vflag = vflag_in;
|
|
|
|
if (neighflag == FULL) no_virial_fdotr_compute = 1;
|
|
|
|
ev_init(eflag,vflag,0);
|
|
|
|
// reallocate per-atom arrays if necessary
|
|
|
|
if (eflag_atom) {
|
|
memoryKK->destroy_kokkos(k_eatom,eatom);
|
|
memoryKK->create_kokkos(k_eatom,eatom,maxeatom,"pair:eatom");
|
|
d_eatom = k_eatom.view<DeviceType>();
|
|
}
|
|
if (vflag_atom) {
|
|
memoryKK->destroy_kokkos(k_vatom,vatom);
|
|
memoryKK->create_kokkos(k_vatom,vatom,maxvatom,"pair:vatom");
|
|
d_vatom = k_vatom.view<DeviceType>();
|
|
}
|
|
|
|
atomKK->sync(execution_space,datamask_read);
|
|
if (eflag || vflag) atomKK->modified(execution_space,datamask_modify);
|
|
else atomKK->modified(execution_space,F_MASK);
|
|
|
|
// grow energy and fp arrays if necessary
|
|
// need to be atom->nmax in length
|
|
|
|
if (atom->nmax > nmax) {
|
|
nmax = atom->nmax;
|
|
k_rho = DAT::tdual_ffloat_1d("pair:rho",nmax);
|
|
k_fp = DAT::tdual_ffloat_1d("pair:fp",nmax);
|
|
d_rho = k_rho.template view<DeviceType>();
|
|
d_fp = k_fp.template view<DeviceType>();
|
|
h_rho = k_rho.h_view;
|
|
h_fp = k_fp.h_view;
|
|
}
|
|
|
|
x = atomKK->k_x.view<DeviceType>();
|
|
f = atomKK->k_f.view<DeviceType>();
|
|
type = atomKK->k_type.view<DeviceType>();
|
|
tag = atomKK->k_tag.view<DeviceType>();
|
|
nlocal = atom->nlocal;
|
|
nall = atom->nlocal + atom->nghost;
|
|
newton_pair = force->newton_pair;
|
|
|
|
NeighListKokkos<DeviceType>* k_list = static_cast<NeighListKokkos<DeviceType>*>(list);
|
|
d_numneigh = k_list->d_numneigh;
|
|
d_neighbors = k_list->d_neighbors;
|
|
d_ilist = k_list->d_ilist;
|
|
int inum = list->inum;
|
|
|
|
need_dup = lmp->kokkos->need_dup<DeviceType>();
|
|
if (need_dup) {
|
|
dup_rho = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_rho);
|
|
dup_f = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(f);
|
|
dup_eatom = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_eatom);
|
|
dup_vatom = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterDuplicated>(d_vatom);
|
|
} else {
|
|
ndup_rho = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_rho);
|
|
ndup_f = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(f);
|
|
ndup_eatom = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_eatom);
|
|
ndup_vatom = Kokkos::Experimental::create_scatter_view<Kokkos::Experimental::ScatterSum, Kokkos::Experimental::ScatterNonDuplicated>(d_vatom);
|
|
}
|
|
|
|
copymode = 1;
|
|
|
|
// zero out density
|
|
|
|
if (newton_pair)
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMInitialize>(0,nall),*this);
|
|
else
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMInitialize>(0,nlocal),*this);
|
|
|
|
// loop over neighbors of my atoms
|
|
|
|
EV_FLOAT ev;
|
|
|
|
// compute kernel A
|
|
|
|
if (neighflag == HALF || neighflag == HALFTHREAD) {
|
|
|
|
if (neighflag == HALF) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelA<HALF,1> >(0,inum),*this);
|
|
} else {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelA<HALF,0> >(0,inum),*this);
|
|
}
|
|
} else if (neighflag == HALFTHREAD) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelA<HALFTHREAD,1> >(0,inum),*this);
|
|
} else {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelA<HALFTHREAD,0> >(0,inum),*this);
|
|
}
|
|
}
|
|
|
|
if (need_dup)
|
|
Kokkos::Experimental::contribute(d_rho, dup_rho);
|
|
|
|
// communicate and sum densities (on the host)
|
|
|
|
if (newton_pair) {
|
|
k_rho.template modify<DeviceType>();
|
|
comm->reverse_comm_pair(this);
|
|
k_rho.template sync<DeviceType>();
|
|
}
|
|
|
|
// compute kernel B
|
|
|
|
if (eflag)
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelB<1> >(0,inum),*this,ev);
|
|
else
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelB<0> >(0,inum),*this);
|
|
|
|
} else if (neighflag == FULL) {
|
|
|
|
// compute kernel AB
|
|
|
|
if (eflag)
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelAB<1> >(0,inum),*this,ev);
|
|
else
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelAB<0> >(0,inum),*this);
|
|
}
|
|
|
|
if (eflag) {
|
|
eng_vdwl += ev.evdwl;
|
|
ev.evdwl = 0.0;
|
|
}
|
|
|
|
// communicate derivative of embedding function
|
|
|
|
k_fp.template modify<DeviceType>();
|
|
comm->forward_comm_pair(this);
|
|
k_fp.template sync<DeviceType>();
|
|
|
|
// compute kernel C
|
|
|
|
if (evflag) {
|
|
if (neighflag == HALF) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALF,1,1> >(0,inum),*this,ev);
|
|
} else {
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALF,0,1> >(0,inum),*this,ev);
|
|
}
|
|
} else if (neighflag == HALFTHREAD) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALFTHREAD,1,1> >(0,inum),*this,ev);
|
|
} else {
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALFTHREAD,0,1> >(0,inum),*this,ev);
|
|
}
|
|
} else if (neighflag == FULL) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<FULL,1,1> >(0,inum),*this,ev);
|
|
} else {
|
|
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<FULL,0,1> >(0,inum),*this,ev);
|
|
}
|
|
}
|
|
} else {
|
|
if (neighflag == HALF) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALF,1,0> >(0,inum),*this);
|
|
} else {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALF,0,0> >(0,inum),*this);
|
|
}
|
|
} else if (neighflag == HALFTHREAD) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALFTHREAD,1,0> >(0,inum),*this);
|
|
} else {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<HALFTHREAD,0,0> >(0,inum),*this);
|
|
}
|
|
} else if (neighflag == FULL) {
|
|
if (newton_pair) {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<FULL,1,0> >(0,inum),*this);
|
|
} else {
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMKernelC<FULL,0,0> >(0,inum),*this);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (need_dup)
|
|
Kokkos::Experimental::contribute(f, dup_f);
|
|
|
|
if (eflag_global) eng_vdwl += ev.evdwl;
|
|
if (vflag_global) {
|
|
virial[0] += ev.v[0];
|
|
virial[1] += ev.v[1];
|
|
virial[2] += ev.v[2];
|
|
virial[3] += ev.v[3];
|
|
virial[4] += ev.v[4];
|
|
virial[5] += ev.v[5];
|
|
}
|
|
|
|
if (vflag_fdotr) pair_virial_fdotr_compute(this);
|
|
|
|
if (eflag_atom) {
|
|
if (need_dup)
|
|
Kokkos::Experimental::contribute(d_eatom, dup_eatom);
|
|
k_eatom.template modify<DeviceType>();
|
|
k_eatom.template sync<LMPHostType>();
|
|
}
|
|
|
|
if (vflag_atom) {
|
|
if (need_dup)
|
|
Kokkos::Experimental::contribute(d_vatom, dup_vatom);
|
|
k_vatom.template modify<DeviceType>();
|
|
k_vatom.template sync<LMPHostType>();
|
|
}
|
|
|
|
copymode = 0;
|
|
|
|
// free duplicated memory
|
|
if (need_dup) {
|
|
dup_rho = decltype(dup_rho)();
|
|
dup_f = decltype(dup_f)();
|
|
dup_eatom = decltype(dup_eatom)();
|
|
dup_vatom = decltype(dup_vatom)();
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
init specific to this pair style
|
|
------------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::init_style()
|
|
{
|
|
// convert read-in file(s) to arrays and spline them
|
|
|
|
PairEAM::init_style();
|
|
|
|
// irequest = neigh request made by parent class
|
|
|
|
neighflag = lmp->kokkos->neighflag;
|
|
int irequest = neighbor->nrequest - 1;
|
|
|
|
neighbor->requests[irequest]->
|
|
kokkos_host = std::is_same<DeviceType,LMPHostType>::value &&
|
|
!std::is_same<DeviceType,LMPDeviceType>::value;
|
|
neighbor->requests[irequest]->
|
|
kokkos_device = std::is_same<DeviceType,LMPDeviceType>::value;
|
|
|
|
if (neighflag == FULL) {
|
|
neighbor->requests[irequest]->full = 1;
|
|
neighbor->requests[irequest]->half = 0;
|
|
} else if (neighflag == HALF || neighflag == HALFTHREAD) {
|
|
neighbor->requests[irequest]->full = 0;
|
|
neighbor->requests[irequest]->half = 1;
|
|
} else {
|
|
error->all(FLERR,"Cannot use chosen neighbor list style with pair eam/kk");
|
|
}
|
|
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
convert read-in funcfl potential(s) to standard array format
|
|
interpolate all file values to a single grid and cutoff
|
|
------------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::file2array()
|
|
{
|
|
PairEAM::file2array();
|
|
|
|
int i,j;
|
|
int n = atom->ntypes;
|
|
|
|
auto k_type2frho = DAT::tdual_int_1d("pair:type2frho",n+1);
|
|
auto k_type2rhor = DAT::tdual_int_2d_dl("pair:type2rhor",n+1,n+1);
|
|
auto k_type2z2r = DAT::tdual_int_2d_dl("pair:type2z2r",n+1,n+1);
|
|
|
|
auto h_type2frho = k_type2frho.h_view;
|
|
auto h_type2rhor = k_type2rhor.h_view;
|
|
auto h_type2z2r = k_type2z2r.h_view;
|
|
|
|
for (i = 1; i <= n; i++) {
|
|
h_type2frho[i] = type2frho[i];
|
|
for (j = 1; j <= n; j++) {
|
|
h_type2rhor(i,j) = type2rhor[i][j];
|
|
h_type2z2r(i,j) = type2z2r[i][j];
|
|
}
|
|
}
|
|
k_type2frho.template modify<LMPHostType>();
|
|
k_type2frho.template sync<DeviceType>();
|
|
k_type2rhor.template modify<LMPHostType>();
|
|
k_type2rhor.template sync<DeviceType>();
|
|
k_type2z2r.template modify<LMPHostType>();
|
|
k_type2z2r.template sync<DeviceType>();
|
|
|
|
d_type2frho = k_type2frho.template view<DeviceType>();
|
|
d_type2rhor = k_type2rhor.template view<DeviceType>();
|
|
d_type2z2r = k_type2z2r.template view<DeviceType>();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::array2spline()
|
|
{
|
|
rdr = 1.0/dr;
|
|
rdrho = 1.0/drho;
|
|
|
|
tdual_ffloat_2d_n7 k_frho_spline = tdual_ffloat_2d_n7("pair:frho",nfrho,nrho+1);
|
|
tdual_ffloat_2d_n7 k_rhor_spline = tdual_ffloat_2d_n7("pair:rhor",nrhor,nr+1);
|
|
tdual_ffloat_2d_n7 k_z2r_spline = tdual_ffloat_2d_n7("pair:z2r",nz2r,nr+1);
|
|
|
|
t_host_ffloat_2d_n7 h_frho_spline = k_frho_spline.h_view;
|
|
t_host_ffloat_2d_n7 h_rhor_spline = k_rhor_spline.h_view;
|
|
t_host_ffloat_2d_n7 h_z2r_spline = k_z2r_spline.h_view;
|
|
|
|
for (int i = 0; i < nfrho; i++)
|
|
interpolate(nrho,drho,frho[i],h_frho_spline,i);
|
|
k_frho_spline.template modify<LMPHostType>();
|
|
k_frho_spline.template sync<DeviceType>();
|
|
|
|
for (int i = 0; i < nrhor; i++)
|
|
interpolate(nr,dr,rhor[i],h_rhor_spline,i);
|
|
k_rhor_spline.template modify<LMPHostType>();
|
|
k_rhor_spline.template sync<DeviceType>();
|
|
|
|
for (int i = 0; i < nz2r; i++)
|
|
interpolate(nr,dr,z2r[i],h_z2r_spline,i);
|
|
k_z2r_spline.template modify<LMPHostType>();
|
|
k_z2r_spline.template sync<DeviceType>();
|
|
|
|
d_frho_spline = k_frho_spline.template view<DeviceType>();
|
|
d_rhor_spline = k_rhor_spline.template view<DeviceType>();
|
|
d_z2r_spline = k_z2r_spline.template view<DeviceType>();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::interpolate(int n, double delta, double *f, t_host_ffloat_2d_n7 h_spline, int i)
|
|
{
|
|
for (int m = 1; m <= n; m++) h_spline(i,m,6) = f[m];
|
|
|
|
h_spline(i,1,5) = h_spline(i,2,6) - h_spline(i,1,6);
|
|
h_spline(i,2,5) = 0.5 * (h_spline(i,3,6)-h_spline(i,1,6));
|
|
h_spline(i,n-1,5) = 0.5 * (h_spline(i,n,6)-h_spline(i,n-2,6));
|
|
h_spline(i,n,5) = h_spline(i,n,6) - h_spline(i,n-1,6);
|
|
|
|
for (int m = 3; m <= n-2; m++)
|
|
h_spline(i,m,5) = ((h_spline(i,m-2,6)-h_spline(i,m+2,6)) +
|
|
8.0*(h_spline(i,m+1,6)-h_spline(i,m-1,6))) / 12.0;
|
|
|
|
for (int m = 1; m <= n-1; m++) {
|
|
h_spline(i,m,4) = 3.0*(h_spline(i,m+1,6)-h_spline(i,m,6)) -
|
|
2.0*h_spline(i,m,5) - h_spline(i,m+1,5);
|
|
h_spline(i,m,3) = h_spline(i,m,5) + h_spline(i,m+1,5) -
|
|
2.0*(h_spline(i,m+1,6)-h_spline(i,m,6));
|
|
}
|
|
|
|
h_spline(i,n,4) = 0.0;
|
|
h_spline(i,n,3) = 0.0;
|
|
|
|
for (int m = 1; m <= n; m++) {
|
|
h_spline(i,m,2) = h_spline(i,m,5)/delta;
|
|
h_spline(i,m,1) = 2.0*h_spline(i,m,4)/delta;
|
|
h_spline(i,m,0) = 3.0*h_spline(i,m,3)/delta;
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
int PairEAMKokkos<DeviceType>::pack_forward_comm_kokkos(int n, DAT::tdual_int_2d k_sendlist,
|
|
int iswap_in, DAT::tdual_xfloat_1d &buf,
|
|
int /*pbc_flag*/, int * /*pbc*/)
|
|
{
|
|
d_sendlist = k_sendlist.view<DeviceType>();
|
|
iswap = iswap_in;
|
|
v_buf = buf.view<DeviceType>();
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMPackForwardComm>(0,n),*this);
|
|
return n;
|
|
}
|
|
|
|
template<class DeviceType>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMPackForwardComm, const int &i) const {
|
|
int j = d_sendlist(iswap, i);
|
|
v_buf[i] = d_fp[j];
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::unpack_forward_comm_kokkos(int n, int first_in, DAT::tdual_xfloat_1d &buf)
|
|
{
|
|
first = first_in;
|
|
v_buf = buf.view<DeviceType>();
|
|
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagPairEAMUnpackForwardComm>(0,n),*this);
|
|
}
|
|
|
|
template<class DeviceType>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMUnpackForwardComm, const int &i) const {
|
|
d_fp[i + first] = v_buf[i];
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
int PairEAMKokkos<DeviceType>::pack_forward_comm(int n, int *list, double *buf,
|
|
int /*pbc_flag*/, int * /*pbc*/)
|
|
{
|
|
k_fp.sync_host();
|
|
|
|
int i,j;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
buf[i] = h_fp[j];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::unpack_forward_comm(int n, int first, double *buf)
|
|
{
|
|
k_fp.sync_host();
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
h_fp[i + first] = buf[i];
|
|
}
|
|
|
|
k_fp.modify_host();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
int PairEAMKokkos<DeviceType>::pack_reverse_comm(int n, int first, double *buf)
|
|
{
|
|
k_rho.sync_host();
|
|
|
|
int i,m,last;
|
|
|
|
m = 0;
|
|
last = first + n;
|
|
for (i = first; i < last; i++) buf[m++] = h_rho[i];
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
void PairEAMKokkos<DeviceType>::unpack_reverse_comm(int n, int *list, double *buf)
|
|
{
|
|
k_rho.sync_host();
|
|
|
|
int i,j,m;
|
|
|
|
m = 0;
|
|
for (i = 0; i < n; i++) {
|
|
j = list[i];
|
|
h_rho[j] += buf[m++];
|
|
}
|
|
|
|
k_rho.modify_host();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMInitialize, const int &i) const {
|
|
d_rho[i] = 0.0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
////Specialisation for Neighborlist types Half, HalfThread, Full
|
|
template<class DeviceType>
|
|
template<int NEIGHFLAG, int NEWTON_PAIR>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelA<NEIGHFLAG,NEWTON_PAIR>, const int &ii) const {
|
|
|
|
// rho = density at each atom
|
|
// loop over neighbors of my atoms
|
|
|
|
// The rho array is duplicated for OpenMP, atomic for CUDA, and neither for Serial
|
|
|
|
auto v_rho = ScatterViewHelper<typename NeedDup<NEIGHFLAG,DeviceType>::value,decltype(dup_rho),decltype(ndup_rho)>::get(dup_rho,ndup_rho);
|
|
auto a_rho = v_rho.template access<typename AtomicDup<NEIGHFLAG,DeviceType>::value>();
|
|
|
|
const int i = d_ilist[ii];
|
|
const X_FLOAT xtmp = x(i,0);
|
|
const X_FLOAT ytmp = x(i,1);
|
|
const X_FLOAT ztmp = x(i,2);
|
|
const int itype = type(i);
|
|
|
|
const int jnum = d_numneigh[i];
|
|
|
|
F_FLOAT rhotmp = 0.0;
|
|
|
|
for (int jj = 0; jj < jnum; jj++) {
|
|
int j = d_neighbors(i,jj);
|
|
j &= NEIGHMASK;
|
|
const X_FLOAT delx = xtmp - x(j,0);
|
|
const X_FLOAT dely = ytmp - x(j,1);
|
|
const X_FLOAT delz = ztmp - x(j,2);
|
|
const int jtype = type(j);
|
|
const F_FLOAT rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if (rsq < cutforcesq) {
|
|
F_FLOAT p = sqrt(rsq)*rdr + 1.0;
|
|
int m = static_cast<int> (p);
|
|
m = MIN(m,nr-1);
|
|
p -= m;
|
|
p = MIN(p,1.0);
|
|
const int d_type2rhor_ji = d_type2rhor(jtype,itype);
|
|
rhotmp += ((d_rhor_spline(d_type2rhor_ji,m,3)*p + d_rhor_spline(d_type2rhor_ji,m,4))*p +
|
|
d_rhor_spline(d_type2rhor_ji,m,5))*p + d_rhor_spline(d_type2rhor_ji,m,6);
|
|
if (NEWTON_PAIR || j < nlocal) {
|
|
const int d_type2rhor_ij = d_type2rhor(itype,jtype);
|
|
a_rho[j] += ((d_rhor_spline(d_type2rhor_ij,m,3)*p + d_rhor_spline(d_type2rhor_ij,m,4))*p +
|
|
d_rhor_spline(d_type2rhor_ij,m,5))*p + d_rhor_spline(d_type2rhor_ij,m,6);
|
|
}
|
|
}
|
|
|
|
}
|
|
a_rho[i] += rhotmp;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
////Specialisation for Neighborlist types Half, HalfThread, Full
|
|
template<class DeviceType>
|
|
template<int EFLAG>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelB<EFLAG>, const int &ii, EV_FLOAT& ev) const {
|
|
// fp = derivative of embedding energy at each atom
|
|
// phi = embedding energy at each atom
|
|
// if rho > rhomax (e.g. due to close approach of two atoms),
|
|
// will exceed table, so add linear term to conserve energy
|
|
|
|
const int i = d_ilist[ii];
|
|
const int itype = type(i);
|
|
|
|
F_FLOAT p = d_rho[i]*rdrho + 1.0;
|
|
int m = static_cast<int> (p);
|
|
m = MAX(1,MIN(m,nrho-1));
|
|
p -= m;
|
|
p = MIN(p,1.0);
|
|
const int d_type2frho_i = d_type2frho[itype];
|
|
d_fp[i] = (d_frho_spline(d_type2frho_i,m,0)*p + d_frho_spline(d_type2frho_i,m,1))*p + d_frho_spline(d_type2frho_i,m,2);
|
|
if (EFLAG) {
|
|
F_FLOAT phi = ((d_frho_spline(d_type2frho_i,m,3)*p + d_frho_spline(d_type2frho_i,m,4))*p +
|
|
d_frho_spline(d_type2frho_i,m,5))*p + d_frho_spline(d_type2frho_i,m,6);
|
|
if (d_rho[i] > rhomax) phi += d_fp[i] * (d_rho[i]-rhomax);
|
|
if (eflag_global) ev.evdwl += phi;
|
|
if (eflag_atom) d_eatom[i] += phi;
|
|
}
|
|
}
|
|
|
|
template<class DeviceType>
|
|
template<int EFLAG>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelB<EFLAG>, const int &ii) const {
|
|
EV_FLOAT ev;
|
|
this->template operator()<EFLAG>(TagPairEAMKernelB<EFLAG>(), ii, ev);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
////Specialisation for Neighborlist types Half, HalfThread, Full
|
|
template<class DeviceType>
|
|
template<int EFLAG>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelAB<EFLAG>, const int &ii, EV_FLOAT& ev) const {
|
|
|
|
// rho = density at each atom
|
|
// loop over neighbors of my atoms
|
|
|
|
const int i = d_ilist[ii];
|
|
const X_FLOAT xtmp = x(i,0);
|
|
const X_FLOAT ytmp = x(i,1);
|
|
const X_FLOAT ztmp = x(i,2);
|
|
const int itype = type(i);
|
|
|
|
const int jnum = d_numneigh[i];
|
|
|
|
F_FLOAT rhotmp = 0.0;
|
|
|
|
for (int jj = 0; jj < jnum; jj++) {
|
|
int j = d_neighbors(i,jj);
|
|
j &= NEIGHMASK;
|
|
const X_FLOAT delx = xtmp - x(j,0);
|
|
const X_FLOAT dely = ytmp - x(j,1);
|
|
const X_FLOAT delz = ztmp - x(j,2);
|
|
const int jtype = type(j);
|
|
const F_FLOAT rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if (rsq < cutforcesq) {
|
|
F_FLOAT p = sqrt(rsq)*rdr + 1.0;
|
|
int m = static_cast<int> (p);
|
|
m = MIN(m,nr-1);
|
|
p -= m;
|
|
p = MIN(p,1.0);
|
|
const int d_type2rhor_ji = d_type2rhor(jtype,itype);
|
|
rhotmp += ((d_rhor_spline(d_type2rhor_ji,m,3)*p + d_rhor_spline(d_type2rhor_ji,m,4))*p +
|
|
d_rhor_spline(d_type2rhor_ji,m,5))*p + d_rhor_spline(d_type2rhor_ji,m,6);
|
|
}
|
|
|
|
}
|
|
d_rho[i] += rhotmp;
|
|
|
|
// fp = derivative of embedding energy at each atom
|
|
// phi = embedding energy at each atom
|
|
// if rho > rhomax (e.g. due to close approach of two atoms),
|
|
// will exceed table, so add linear term to conserve energy
|
|
|
|
F_FLOAT p = d_rho[i]*rdrho + 1.0;
|
|
int m = static_cast<int> (p);
|
|
m = MAX(1,MIN(m,nrho-1));
|
|
p -= m;
|
|
p = MIN(p,1.0);
|
|
const int d_type2frho_i = d_type2frho[itype];
|
|
d_fp[i] = (d_frho_spline(d_type2frho_i,m,0)*p + d_frho_spline(d_type2frho_i,m,1))*p + d_frho_spline(d_type2frho_i,m,2);
|
|
if (EFLAG) {
|
|
F_FLOAT phi = ((d_frho_spline(d_type2frho_i,m,3)*p + d_frho_spline(d_type2frho_i,m,4))*p +
|
|
d_frho_spline(d_type2frho_i,m,5))*p + d_frho_spline(d_type2frho_i,m,6);
|
|
if (d_rho[i] > rhomax) phi += d_fp[i] * (d_rho[i]-rhomax);
|
|
if (eflag_global) ev.evdwl += phi;
|
|
if (eflag_atom) d_eatom[i] += phi;
|
|
}
|
|
|
|
}
|
|
|
|
template<class DeviceType>
|
|
template<int EFLAG>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelAB<EFLAG>, const int &ii) const {
|
|
EV_FLOAT ev;
|
|
this->template operator()<EFLAG>(TagPairEAMKernelAB<EFLAG>(), ii, ev);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
////Specialisation for Neighborlist types Half, HalfThread, Full
|
|
template<class DeviceType>
|
|
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelC<NEIGHFLAG,NEWTON_PAIR,EVFLAG>, const int &ii, EV_FLOAT& ev) const {
|
|
|
|
// The f array is duplicated for OpenMP, atomic for CUDA, and neither for Serial
|
|
|
|
auto v_f = ScatterViewHelper<typename NeedDup<NEIGHFLAG,DeviceType>::value,decltype(dup_f),decltype(ndup_f)>::get(dup_f,ndup_f);
|
|
auto a_f = v_f.template access<typename AtomicDup<NEIGHFLAG,DeviceType>::value>();
|
|
|
|
const int i = d_ilist[ii];
|
|
const X_FLOAT xtmp = x(i,0);
|
|
const X_FLOAT ytmp = x(i,1);
|
|
const X_FLOAT ztmp = x(i,2);
|
|
const int itype = type(i);
|
|
|
|
const int jnum = d_numneigh[i];
|
|
|
|
F_FLOAT fxtmp = 0.0;
|
|
F_FLOAT fytmp = 0.0;
|
|
F_FLOAT fztmp = 0.0;
|
|
|
|
for (int jj = 0; jj < jnum; jj++) {
|
|
int j = d_neighbors(i,jj);
|
|
j &= NEIGHMASK;
|
|
const X_FLOAT delx = xtmp - x(j,0);
|
|
const X_FLOAT dely = ytmp - x(j,1);
|
|
const X_FLOAT delz = ztmp - x(j,2);
|
|
const int jtype = type(j);
|
|
const F_FLOAT rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
if (rsq < cutforcesq) {
|
|
const F_FLOAT r = sqrt(rsq);
|
|
F_FLOAT p = r*rdr + 1.0;
|
|
int m = static_cast<int> (p);
|
|
m = MIN(m,nr-1);
|
|
p -= m;
|
|
p = MIN(p,1.0);
|
|
|
|
// rhoip = derivative of (density at atom j due to atom i)
|
|
// rhojp = derivative of (density at atom i due to atom j)
|
|
// phi = pair potential energy
|
|
// phip = phi'
|
|
// z2 = phi * r
|
|
// z2p = (phi * r)' = (phi' r) + phi
|
|
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
|
|
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
|
|
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
|
|
|
|
const int d_type2rhor_ij = d_type2rhor(itype,jtype);
|
|
const F_FLOAT rhoip = (d_rhor_spline(d_type2rhor_ij,m,0)*p + d_rhor_spline(d_type2rhor_ij,m,1))*p +
|
|
d_rhor_spline(d_type2rhor_ij,m,2);
|
|
const int d_type2rhor_ji = d_type2rhor(jtype,itype);
|
|
const F_FLOAT rhojp = (d_rhor_spline(d_type2rhor_ji,m,0)*p + d_rhor_spline(d_type2rhor_ji,m,1))*p +
|
|
d_rhor_spline(d_type2rhor_ji,m,2);
|
|
const int d_type2z2r_ij = d_type2z2r(itype,jtype);
|
|
|
|
const auto z2r_spline_3 = d_z2r_spline(d_type2z2r_ij,m,3);
|
|
const auto z2r_spline_4 = d_z2r_spline(d_type2z2r_ij,m,4);
|
|
const auto z2r_spline_5 = d_z2r_spline(d_type2z2r_ij,m,5);
|
|
const auto z2r_spline_6 = d_z2r_spline(d_type2z2r_ij,m,6);
|
|
|
|
const F_FLOAT z2p = (3.0*rdr*z2r_spline_3*p + 2.0*rdr*z2r_spline_4)*p +
|
|
rdr*z2r_spline_5; // the rdr and the factors of 3.0 and 2.0 come out of the interpolate function
|
|
const F_FLOAT z2 = ((z2r_spline_3*p + z2r_spline_4)*p +
|
|
z2r_spline_5)*p + z2r_spline_6;
|
|
|
|
const F_FLOAT recip = 1.0/r;
|
|
const F_FLOAT phi = z2*recip;
|
|
const F_FLOAT phip = z2p*recip - phi*recip;
|
|
const F_FLOAT psip = d_fp[i]*rhojp + d_fp[j]*rhoip + phip;
|
|
const F_FLOAT fpair = -psip*recip;
|
|
|
|
fxtmp += delx*fpair;
|
|
fytmp += dely*fpair;
|
|
fztmp += delz*fpair;
|
|
|
|
if ((NEIGHFLAG==HALF || NEIGHFLAG==HALFTHREAD) && (NEWTON_PAIR || j < nlocal)) {
|
|
a_f(j,0) -= delx*fpair;
|
|
a_f(j,1) -= dely*fpair;
|
|
a_f(j,2) -= delz*fpair;
|
|
}
|
|
|
|
if (EVFLAG) {
|
|
if (eflag) {
|
|
ev.evdwl += (((NEIGHFLAG==HALF || NEIGHFLAG==HALFTHREAD)&&(NEWTON_PAIR||(j<nlocal)))?1.0:0.5)*phi;
|
|
}
|
|
|
|
if (vflag_either || eflag_atom) this->template ev_tally<NEIGHFLAG,NEWTON_PAIR>(ev,i,j,phi,fpair,delx,dely,delz);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
a_f(i,0) += fxtmp;
|
|
a_f(i,1) += fytmp;
|
|
a_f(i,2) += fztmp;
|
|
}
|
|
|
|
template<class DeviceType>
|
|
template<int NEIGHFLAG, int NEWTON_PAIR, int EVFLAG>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::operator()(TagPairEAMKernelC<NEIGHFLAG,NEWTON_PAIR,EVFLAG>, const int &ii) const {
|
|
EV_FLOAT ev;
|
|
this->template operator()<NEIGHFLAG,NEWTON_PAIR,EVFLAG>(TagPairEAMKernelC<NEIGHFLAG,NEWTON_PAIR,EVFLAG>(), ii, ev);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
template<class DeviceType>
|
|
template<int NEIGHFLAG, int NEWTON_PAIR>
|
|
KOKKOS_INLINE_FUNCTION
|
|
void PairEAMKokkos<DeviceType>::ev_tally(EV_FLOAT &ev, const int &i, const int &j,
|
|
const F_FLOAT &epair, const F_FLOAT &fpair, const F_FLOAT &delx,
|
|
const F_FLOAT &dely, const F_FLOAT &delz) const
|
|
{
|
|
const int EFLAG = eflag;
|
|
const int VFLAG = vflag_either;
|
|
|
|
// The eatom and vatom arrays are duplicated for OpenMP, atomic for CUDA, and neither for Serial
|
|
|
|
auto v_eatom = ScatterViewHelper<typename NeedDup<NEIGHFLAG,DeviceType>::value,decltype(dup_eatom),decltype(ndup_eatom)>::get(dup_eatom,ndup_eatom);
|
|
auto a_eatom = v_eatom.template access<typename AtomicDup<NEIGHFLAG,DeviceType>::value>();
|
|
|
|
auto v_vatom = ScatterViewHelper<typename NeedDup<NEIGHFLAG,DeviceType>::value,decltype(dup_vatom),decltype(ndup_vatom)>::get(dup_vatom,ndup_vatom);
|
|
auto a_vatom = v_vatom.template access<typename AtomicDup<NEIGHFLAG,DeviceType>::value>();
|
|
|
|
if (EFLAG) {
|
|
if (eflag_atom) {
|
|
const E_FLOAT epairhalf = 0.5 * epair;
|
|
if (NEIGHFLAG!=FULL) {
|
|
if (NEWTON_PAIR || i < nlocal) a_eatom[i] += epairhalf;
|
|
if (NEWTON_PAIR || j < nlocal) a_eatom[j] += epairhalf;
|
|
} else {
|
|
a_eatom[i] += epairhalf;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (VFLAG) {
|
|
const E_FLOAT v0 = delx*delx*fpair;
|
|
const E_FLOAT v1 = dely*dely*fpair;
|
|
const E_FLOAT v2 = delz*delz*fpair;
|
|
const E_FLOAT v3 = delx*dely*fpair;
|
|
const E_FLOAT v4 = delx*delz*fpair;
|
|
const E_FLOAT v5 = dely*delz*fpair;
|
|
|
|
if (vflag_global) {
|
|
if (NEIGHFLAG!=FULL) {
|
|
if (NEWTON_PAIR || i < nlocal) {
|
|
ev.v[0] += 0.5*v0;
|
|
ev.v[1] += 0.5*v1;
|
|
ev.v[2] += 0.5*v2;
|
|
ev.v[3] += 0.5*v3;
|
|
ev.v[4] += 0.5*v4;
|
|
ev.v[5] += 0.5*v5;
|
|
}
|
|
if (NEWTON_PAIR || j < nlocal) {
|
|
ev.v[0] += 0.5*v0;
|
|
ev.v[1] += 0.5*v1;
|
|
ev.v[2] += 0.5*v2;
|
|
ev.v[3] += 0.5*v3;
|
|
ev.v[4] += 0.5*v4;
|
|
ev.v[5] += 0.5*v5;
|
|
}
|
|
} else {
|
|
ev.v[0] += 0.5*v0;
|
|
ev.v[1] += 0.5*v1;
|
|
ev.v[2] += 0.5*v2;
|
|
ev.v[3] += 0.5*v3;
|
|
ev.v[4] += 0.5*v4;
|
|
ev.v[5] += 0.5*v5;
|
|
}
|
|
}
|
|
|
|
if (vflag_atom) {
|
|
if (NEIGHFLAG!=FULL) {
|
|
if (NEWTON_PAIR || i < nlocal) {
|
|
a_vatom(i,0) += 0.5*v0;
|
|
a_vatom(i,1) += 0.5*v1;
|
|
a_vatom(i,2) += 0.5*v2;
|
|
a_vatom(i,3) += 0.5*v3;
|
|
a_vatom(i,4) += 0.5*v4;
|
|
a_vatom(i,5) += 0.5*v5;
|
|
}
|
|
if (NEWTON_PAIR || j < nlocal) {
|
|
a_vatom(j,0) += 0.5*v0;
|
|
a_vatom(j,1) += 0.5*v1;
|
|
a_vatom(j,2) += 0.5*v2;
|
|
a_vatom(j,3) += 0.5*v3;
|
|
a_vatom(j,4) += 0.5*v4;
|
|
a_vatom(j,5) += 0.5*v5;
|
|
}
|
|
} else {
|
|
a_vatom(i,0) += 0.5*v0;
|
|
a_vatom(i,1) += 0.5*v1;
|
|
a_vatom(i,2) += 0.5*v2;
|
|
a_vatom(i,3) += 0.5*v3;
|
|
a_vatom(i,4) += 0.5*v4;
|
|
a_vatom(i,5) += 0.5*v5;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace LAMMPS_NS {
|
|
template class PairEAMKokkos<LMPDeviceType>;
|
|
#ifdef LMP_KOKKOS_GPU
|
|
template class PairEAMKokkos<LMPHostType>;
|
|
#endif
|
|
}
|