491 lines
14 KiB
C++
491 lines
14 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
http://lammps.sandia.gov, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
This software is distributed under the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include <cmath>
|
|
#include "pair_lubricate_poly_omp.h"
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "domain.h"
|
|
#include "force.h"
|
|
#include "input.h"
|
|
#include "neighbor.h"
|
|
#include "neigh_list.h"
|
|
#include "update.h"
|
|
#include "variable.h"
|
|
#include "random_mars.h"
|
|
#include "fix_wall.h"
|
|
#include "fix_deform.h"
|
|
#include "math_const.h"
|
|
|
|
#include "suffix.h"
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
|
|
// same as fix_wall.cpp
|
|
|
|
enum{EDGE,CONSTANT,VARIABLE};
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairLubricatePolyOMP::PairLubricatePolyOMP(LAMMPS *lmp) :
|
|
PairLubricatePoly(lmp), ThrOMP(lmp, THR_PAIR)
|
|
{
|
|
suffix_flag |= Suffix::OMP;
|
|
respa_enable = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
PairLubricatePolyOMP::~PairLubricatePolyOMP()
|
|
{}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void PairLubricatePolyOMP::compute(int eflag, int vflag)
|
|
{
|
|
if (eflag || vflag) {
|
|
ev_setup(eflag,vflag);
|
|
} else evflag = vflag_fdotr = 0;
|
|
|
|
const int nall = atom->nlocal + atom->nghost;
|
|
const int nthreads = comm->nthreads;
|
|
const int inum = list->inum;
|
|
|
|
|
|
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
|
|
// in the volume fraction as a result of fix deform or moving walls
|
|
|
|
double dims[3], wallcoord;
|
|
if (flagVF) // Flag for volume fraction corrections
|
|
if (flagdeform || flagwall == 2){ // Possible changes in volume fraction
|
|
if (flagdeform && !flagwall)
|
|
for (int j = 0; j < 3; j++)
|
|
dims[j] = domain->prd[j];
|
|
else if (flagwall == 2 || (flagdeform && flagwall == 1)){
|
|
double wallhi[3], walllo[3];
|
|
for (int j = 0; j < 3; j++){
|
|
wallhi[j] = domain->prd[j];
|
|
walllo[j] = 0;
|
|
}
|
|
for (int m = 0; m < wallfix->nwall; m++){
|
|
int dim = wallfix->wallwhich[m] / 2;
|
|
int side = wallfix->wallwhich[m] % 2;
|
|
if (wallfix->xstyle[m] == VARIABLE){
|
|
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
|
|
}
|
|
else wallcoord = wallfix->coord0[m];
|
|
if (side == 0) walllo[dim] = wallcoord;
|
|
else wallhi[dim] = wallcoord;
|
|
}
|
|
for (int j = 0; j < 3; j++)
|
|
dims[j] = wallhi[j] - walllo[j];
|
|
}
|
|
double vol_T = dims[0]*dims[1]*dims[2];
|
|
double vol_f = vol_P/vol_T;
|
|
if (flaglog == 0) {
|
|
R0 = 6*MY_PI*mu*(1.0 + 2.16*vol_f);
|
|
RT0 = 8*MY_PI*mu;
|
|
RS0 = 20.0/3.0*MY_PI*mu*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
|
|
} else {
|
|
R0 = 6*MY_PI*mu*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
|
|
RT0 = 8*MY_PI*mu*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
|
|
RS0 = 20.0/3.0*MY_PI*mu*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
|
|
}
|
|
}
|
|
|
|
// end of R0 adjustment code
|
|
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel default(none) shared(eflag,vflag)
|
|
#endif
|
|
{
|
|
int ifrom, ito, tid;
|
|
|
|
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
|
|
ThrData *thr = fix->get_thr(tid);
|
|
thr->timer(Timer::START);
|
|
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
|
|
|
|
if (flaglog) {
|
|
if (shearing) {
|
|
if (evflag)
|
|
eval<1,1,1>(ifrom, ito, thr);
|
|
else eval<1,1,0>(ifrom, ito, thr);
|
|
} else {
|
|
if (evflag)
|
|
eval<1,0,1>(ifrom, ito, thr);
|
|
else eval<1,0,0>(ifrom, ito, thr);
|
|
}
|
|
} else {
|
|
if (shearing) {
|
|
if (evflag)
|
|
eval<0,1,1>(ifrom, ito, thr);
|
|
else eval<0,1,0>(ifrom, ito, thr);
|
|
} else {
|
|
if (evflag)
|
|
eval<0,0,1>(ifrom, ito, thr);
|
|
else eval<0,0,0>(ifrom, ito, thr);
|
|
}
|
|
}
|
|
|
|
thr->timer(Timer::PAIR);
|
|
reduce_thr(this, eflag, vflag, thr);
|
|
} // end of omp parallel region
|
|
}
|
|
|
|
template <int FLAGLOG, int SHEARING, int EVFLAG>
|
|
void PairLubricatePolyOMP::eval(int iifrom, int iito, ThrData * const thr)
|
|
{
|
|
int i,j,ii,jj,jnum,itype,jtype;
|
|
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
|
|
double rsq,r,h_sep,beta0,beta1,radi,radj;
|
|
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
|
|
double vt1,vt2,vt3,wt1,wt2,wt3,wdotn;
|
|
double vRS0;
|
|
double vi[3],vj[3],wi[3],wj[3],xl[3],jl[3];
|
|
double a_sq,a_sh,a_pu;
|
|
int *ilist,*jlist,*numneigh,**firstneigh;
|
|
double lamda[3],vstream[3];
|
|
|
|
double vxmu2f = force->vxmu2f;
|
|
|
|
double * const * const x = atom->x;
|
|
double * const * const v = atom->v;
|
|
double * const * const f = thr->get_f();
|
|
double * const * const omega = atom->omega;
|
|
double * const * const torque = thr->get_torque();
|
|
const double * const radius = atom->radius;
|
|
const int * const type = atom->type;
|
|
const int nlocal = atom->nlocal;
|
|
|
|
int overlaps = 0;
|
|
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// subtract streaming component of velocity, omega, angmom
|
|
// assume fluid streaming velocity = box deformation rate
|
|
// vstream = (ux,uy,uz)
|
|
// ux = h_rate[0]*x + h_rate[5]*y + h_rate[4]*z
|
|
// uy = h_rate[1]*y + h_rate[3]*z
|
|
// uz = h_rate[2]*z
|
|
// omega_new = omega - curl(vstream)/2
|
|
// angmom_new = angmom - I*curl(vstream)/2
|
|
// Ef = (grad(vstream) + (grad(vstream))^T) / 2
|
|
|
|
if (shearing) {
|
|
double *h_rate = domain->h_rate;
|
|
double *h_ratelo = domain->h_ratelo;
|
|
|
|
for (ii = iifrom; ii < iito; ii++) {
|
|
i = ilist[ii];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
domain->x2lamda(x[i],lamda);
|
|
vstream[0] = h_rate[0]*lamda[0] + h_rate[5]*lamda[1] +
|
|
h_rate[4]*lamda[2] + h_ratelo[0];
|
|
vstream[1] = h_rate[1]*lamda[1] + h_rate[3]*lamda[2] + h_ratelo[1];
|
|
vstream[2] = h_rate[2]*lamda[2] + h_ratelo[2];
|
|
v[i][0] -= vstream[0];
|
|
v[i][1] -= vstream[1];
|
|
v[i][2] -= vstream[2];
|
|
|
|
omega[i][0] += 0.5*h_rate[3];
|
|
omega[i][1] -= 0.5*h_rate[4];
|
|
omega[i][2] += 0.5*h_rate[5];
|
|
}
|
|
|
|
// set Ef from h_rate in strain units
|
|
|
|
Ef[0][0] = h_rate[0]/domain->xprd;
|
|
Ef[1][1] = h_rate[1]/domain->yprd;
|
|
Ef[2][2] = h_rate[2]/domain->zprd;
|
|
Ef[0][1] = Ef[1][0] = 0.5 * h_rate[5]/domain->yprd;
|
|
Ef[0][2] = Ef[2][0] = 0.5 * h_rate[4]/domain->zprd;
|
|
Ef[1][2] = Ef[2][1] = 0.5 * h_rate[3]/domain->zprd;
|
|
|
|
// copy updated omega to the ghost particles
|
|
// no need to do this if not shearing since comm->ghost_velocity is set
|
|
|
|
sync_threads();
|
|
|
|
// MPI communication only on master thread
|
|
#if defined(_OPENMP)
|
|
#pragma omp master
|
|
#endif
|
|
{ comm->forward_comm_pair(this); }
|
|
|
|
sync_threads();
|
|
}
|
|
|
|
// R0 adjustment has already been done in this->compute()
|
|
|
|
for (ii = iifrom; ii < iito; ++ii) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
// angular velocity
|
|
|
|
wi[0] = omega[i][0];
|
|
wi[1] = omega[i][1];
|
|
wi[2] = omega[i][2];
|
|
|
|
// FLD contribution to force and torque due to isotropic terms
|
|
// FLD contribution to stress from isotropic RS0
|
|
|
|
if (flagfld) {
|
|
f[i][0] -= vxmu2f*R0*radi*v[i][0];
|
|
f[i][1] -= vxmu2f*R0*radi*v[i][1];
|
|
f[i][2] -= vxmu2f*R0*radi*v[i][2];
|
|
const double rad3 = radi*radi*radi;
|
|
torque[i][0] -= vxmu2f*RT0*rad3*wi[0];
|
|
torque[i][1] -= vxmu2f*RT0*rad3*wi[1];
|
|
torque[i][2] -= vxmu2f*RT0*rad3*wi[2];
|
|
|
|
if (SHEARING && vflag_either) {
|
|
vRS0 = -vxmu2f * RS0*rad3;
|
|
v_tally_tensor(i,i,nlocal,/* newton_pair */ 0,
|
|
vRS0*Ef[0][0],vRS0*Ef[1][1],vRS0*Ef[2][2],
|
|
vRS0*Ef[0][1],vRS0*Ef[0][2],vRS0*Ef[1][2]);
|
|
}
|
|
}
|
|
|
|
if (!flagHI) continue;
|
|
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
jtype = type[j];
|
|
radj = atom->radius[j];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
r = sqrt(rsq);
|
|
|
|
// angular momentum = I*omega = 2/5 * M*R^2 * omega
|
|
|
|
wj[0] = omega[j][0];
|
|
wj[1] = omega[j][1];
|
|
wj[2] = omega[j][2];
|
|
|
|
// xl = point of closest approach on particle i from its center
|
|
|
|
xl[0] = -delx/r*radi;
|
|
xl[1] = -dely/r*radi;
|
|
xl[2] = -delz/r*radi;
|
|
jl[0] = -delx/r*radj;
|
|
jl[1] = -dely/r*radj;
|
|
jl[2] = -delz/r*radj;
|
|
|
|
// velocity at the point of closest approach on both particles
|
|
// v = v + omega_cross_xl - Ef.xl
|
|
|
|
// particle i
|
|
|
|
vi[0] = v[i][0] + (wi[1]*xl[2] - wi[2]*xl[1])
|
|
- (Ef[0][0]*xl[0] + Ef[0][1]*xl[1] + Ef[0][2]*xl[2]);
|
|
|
|
vi[1] = v[i][1] + (wi[2]*xl[0] - wi[0]*xl[2])
|
|
- (Ef[1][0]*xl[0] + Ef[1][1]*xl[1] + Ef[1][2]*xl[2]);
|
|
|
|
vi[2] = v[i][2] + (wi[0]*xl[1] - wi[1]*xl[0])
|
|
- (Ef[2][0]*xl[0] + Ef[2][1]*xl[1] + Ef[2][2]*xl[2]);
|
|
|
|
// particle j
|
|
|
|
vj[0] = v[j][0] - (wj[1]*jl[2] - wj[2]*jl[1])
|
|
+ (Ef[0][0]*jl[0] + Ef[0][1]*jl[1] + Ef[0][2]*jl[2]);
|
|
|
|
vj[1] = v[j][1] - (wj[2]*jl[0] - wj[0]*jl[2])
|
|
+ (Ef[1][0]*jl[0] + Ef[1][1]*jl[1] + Ef[1][2]*jl[2]);
|
|
|
|
vj[2] = v[j][2] - (wj[0]*jl[1] - wj[1]*jl[0])
|
|
+ (Ef[2][0]*jl[0] + Ef[2][1]*jl[1] + Ef[2][2]*jl[2]);
|
|
|
|
// scalar resistances XA and YA
|
|
|
|
h_sep = r - radi-radj;
|
|
|
|
// check for overlaps
|
|
|
|
if (h_sep < 0.0) overlaps++;
|
|
|
|
// if less than the minimum gap use the minimum gap instead
|
|
|
|
if (r < cut_inner[itype][jtype])
|
|
h_sep = cut_inner[itype][jtype] - radi-radj;
|
|
|
|
// scale h_sep by radi
|
|
|
|
h_sep = h_sep/radi;
|
|
beta0 = radj/radi;
|
|
beta1 = 1.0 + beta0;
|
|
|
|
// scalar resistances
|
|
|
|
if (FLAGLOG) {
|
|
a_sq = beta0*beta0/beta1/beta1/h_sep +
|
|
(1.0+7.0*beta0+beta0*beta0)/5.0/pow(beta1,3.0)*log(1.0/h_sep);
|
|
a_sq += (1.0+18.0*beta0-29.0*beta0*beta0+18.0 *
|
|
pow(beta0,3.0)+pow(beta0,4.0))/21.0/pow(beta1,4.0) *
|
|
h_sep*log(1.0/h_sep);
|
|
a_sq *= 6.0*MY_PI*mu*radi;
|
|
a_sh = 4.0*beta0*(2.0+beta0+2.0*beta0*beta0)/15.0/pow(beta1,3.0) *
|
|
log(1.0/h_sep);
|
|
a_sh += 4.0*(16.0-45.0*beta0+58.0*beta0*beta0-45.0*pow(beta0,3.0) +
|
|
16.0*pow(beta0,4.0))/375.0/pow(beta1,4.0) *
|
|
h_sep*log(1.0/h_sep);
|
|
a_sh *= 6.0*MY_PI*mu*radi;
|
|
// old invalid eq for pumping term
|
|
// changed 29Jul16 from eq 9.25 -> 9.27 in Kim and Karilla
|
|
// a_pu = beta0*(4.0+beta0)/10.0/beta1/beta1*log(1.0/h_sep);
|
|
// a_pu += (32.0-33.0*beta0+83.0*beta0*beta0+43.0 *
|
|
// pow(beta0,3.0))/250.0/pow(beta1,3.0)*h_sep*log(1.0/h_sep);
|
|
// a_pu *= 8.0*MY_PI*mu*pow(radi,3.0);
|
|
a_pu = 2.0*beta0/5.0/beta1*log(1.0/h_sep);
|
|
a_pu += 2.0*(8.0+6.0*beta0+33.0*beta0*beta0)/125.0/beta1/beta1*
|
|
h_sep*log(1.0/h_sep);
|
|
a_pu *= 8.0*MY_PI*mu*pow(radi,3.0);
|
|
} else a_sq = 6.0*MY_PI*mu*radi*(beta0*beta0/beta1/beta1/h_sep);
|
|
|
|
// relative velocity at the point of closest approach
|
|
// includes fluid velocity
|
|
|
|
vr1 = vi[0] - vj[0];
|
|
vr2 = vi[1] - vj[1];
|
|
vr3 = vi[2] - vj[2];
|
|
|
|
// normal component (vr.n)n
|
|
|
|
vnnr = (vr1*delx + vr2*dely + vr3*delz)/r;
|
|
vn1 = vnnr*delx/r;
|
|
vn2 = vnnr*dely/r;
|
|
vn3 = vnnr*delz/r;
|
|
|
|
// tangential component vr - (vr.n)n
|
|
|
|
vt1 = vr1 - vn1;
|
|
vt2 = vr2 - vn2;
|
|
vt3 = vr3 - vn3;
|
|
|
|
// force due to squeeze type motion
|
|
|
|
fx = a_sq*vn1;
|
|
fy = a_sq*vn2;
|
|
fz = a_sq*vn3;
|
|
|
|
// force due to all shear kind of motions
|
|
|
|
if (FLAGLOG) {
|
|
fx = fx + a_sh*vt1;
|
|
fy = fy + a_sh*vt2;
|
|
fz = fz + a_sh*vt3;
|
|
}
|
|
|
|
// scale forces for appropriate units
|
|
|
|
fx *= vxmu2f;
|
|
fy *= vxmu2f;
|
|
fz *= vxmu2f;
|
|
|
|
// add to total force
|
|
|
|
f[i][0] -= fx;
|
|
f[i][1] -= fy;
|
|
f[i][2] -= fz;
|
|
|
|
// torque due to this force
|
|
|
|
if (FLAGLOG) {
|
|
tx = xl[1]*fz - xl[2]*fy;
|
|
ty = xl[2]*fx - xl[0]*fz;
|
|
tz = xl[0]*fy - xl[1]*fx;
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
// torque due to a_pu
|
|
|
|
wdotn = ((wi[0]-wj[0])*delx + (wi[1]-wj[1])*dely +
|
|
(wi[2]-wj[2])*delz)/r;
|
|
wt1 = (wi[0]-wj[0]) - wdotn*delx/r;
|
|
wt2 = (wi[1]-wj[1]) - wdotn*dely/r;
|
|
wt3 = (wi[2]-wj[2]) - wdotn*delz/r;
|
|
|
|
tx = a_pu*wt1;
|
|
ty = a_pu*wt2;
|
|
tz = a_pu*wt3;
|
|
|
|
torque[i][0] -= vxmu2f*tx;
|
|
torque[i][1] -= vxmu2f*ty;
|
|
torque[i][2] -= vxmu2f*tz;
|
|
|
|
}
|
|
|
|
if (EVFLAG) ev_tally_xyz(i,nlocal,nlocal, /* newton_pair */ 0,
|
|
0.0,0.0,-fx,-fy,-fz,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
|
|
// restore streaming component of velocity, omega, angmom
|
|
|
|
if (SHEARING) {
|
|
double *h_rate = domain->h_rate;
|
|
double *h_ratelo = domain->h_ratelo;
|
|
|
|
for (ii = iifrom; ii < iito; ii++) {
|
|
i = ilist[ii];
|
|
itype = type[i];
|
|
radi = radius[i];
|
|
|
|
domain->x2lamda(x[i],lamda);
|
|
vstream[0] = h_rate[0]*lamda[0] + h_rate[5]*lamda[1] +
|
|
h_rate[4]*lamda[2] + h_ratelo[0];
|
|
vstream[1] = h_rate[1]*lamda[1] + h_rate[3]*lamda[2] + h_ratelo[1];
|
|
vstream[2] = h_rate[2]*lamda[2] + h_ratelo[2];
|
|
v[i][0] += vstream[0];
|
|
v[i][1] += vstream[1];
|
|
v[i][2] += vstream[2];
|
|
|
|
omega[i][0] -= 0.5*h_rate[3];
|
|
omega[i][1] += 0.5*h_rate[4];
|
|
omega[i][2] -= 0.5*h_rate[5];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double PairLubricatePolyOMP::memory_usage()
|
|
{
|
|
double bytes = memory_usage_thr();
|
|
bytes += PairLubricatePoly::memory_usage();
|
|
|
|
return bytes;
|
|
}
|