Files
lammps/lib/kokkos/containers/unit_tests/TestDualView.hpp
2024-09-11 09:20:36 -06:00

650 lines
20 KiB
C++

//@HEADER
// ************************************************************************
//
// Kokkos v. 4.0
// Copyright (2022) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
// See https://kokkos.org/LICENSE for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//@HEADER
#ifndef KOKKOS_TEST_DUALVIEW_HPP
#define KOKKOS_TEST_DUALVIEW_HPP
#include <gtest/gtest.h>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <Kokkos_Timer.hpp>
#include <Kokkos_DualView.hpp>
namespace Test {
namespace Impl {
template <typename Scalar, class Device>
struct test_dualview_alloc {
using scalar_type = Scalar;
using execution_space = Device;
template <typename ViewType>
bool run_me(unsigned int n, unsigned int m) {
if (n < 10) n = 10;
if (m < 3) m = 3;
{
ViewType b1;
if (b1.is_allocated() == true) return false;
b1 = ViewType("B1", n, m);
ViewType b2(b1);
ViewType b3("B3", n, m);
if (b1.is_allocated() == false) return false;
if (b2.is_allocated() == false) return false;
if (b3.is_allocated() == false) return false;
}
return true;
}
bool result = false;
test_dualview_alloc(unsigned int size) {
result =
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(size, 3);
}
};
template <typename Scalar, class Device>
struct test_dualview_copy_construction_and_assignment {
using scalar_type = Scalar;
using execution_space = Device;
void operator()() {
constexpr unsigned int n = 10;
constexpr unsigned int m = 5;
using SrcViewType = Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>;
using DstViewType =
Kokkos::DualView<const Scalar * [m], Kokkos::LayoutLeft, Device>;
SrcViewType a("A", n, m);
// Copy construction
DstViewType b(a);
// Copy assignment
DstViewType c = a;
// Check equality (shallow) of the host and device views
ASSERT_EQ(a.view_host(), b.view_host());
ASSERT_EQ(a.view_device(), b.view_device());
ASSERT_EQ(a.view_host(), c.view_host());
ASSERT_EQ(a.view_device(), c.view_device());
// We can't test shallow equality of modified_flags because it's protected.
// So we test it indirectly through sync state behavior.
if (!std::decay_t<SrcViewType>::impl_dualview_is_single_device::value) {
a.clear_sync_state();
a.modify_host();
ASSERT_TRUE(a.need_sync_device());
ASSERT_TRUE(b.need_sync_device());
ASSERT_TRUE(c.need_sync_device());
a.clear_sync_state();
}
}
};
template <typename Scalar, class Device>
struct test_dualview_combinations {
using self_type = test_dualview_combinations<Scalar, Device>;
using scalar_type = Scalar;
using execution_space = Device;
Scalar reference;
Scalar result;
template <typename ViewType>
Scalar run_me(unsigned int n, unsigned int m, bool with_init) {
if (n < 10) n = 10;
if (m < 3) m = 3;
ViewType a;
if (with_init) {
a = ViewType("A", n, m);
} else {
a = ViewType(Kokkos::view_alloc(Kokkos::WithoutInitializing, "A"), n, m);
}
Kokkos::deep_copy(a.d_view, 1);
a.template modify<typename ViewType::execution_space>();
a.template sync<typename ViewType::host_mirror_space>();
a.template sync<typename ViewType::host_mirror_space>(
Kokkos::DefaultExecutionSpace{});
a.h_view(5, 1) = 3;
a.h_view(6, 1) = 4;
a.h_view(7, 2) = 5;
a.template modify<typename ViewType::host_mirror_space>();
ViewType b = Kokkos::subview(a, std::pair<unsigned int, unsigned int>(6, 9),
std::pair<unsigned int, unsigned int>(0, 1));
a.template sync<typename ViewType::execution_space>();
a.template sync<typename ViewType::execution_space>(
Kokkos::DefaultExecutionSpace{});
b.template modify<typename ViewType::execution_space>();
Kokkos::deep_copy(b.d_view, 2);
a.template sync<typename ViewType::host_mirror_space>();
a.template sync<typename ViewType::host_mirror_space>(
Kokkos::DefaultExecutionSpace{});
Scalar count = 0;
for (unsigned int i = 0; i < a.d_view.extent(0); i++)
for (unsigned int j = 0; j < a.d_view.extent(1); j++)
count += a.h_view(i, j);
return count - a.d_view.extent(0) * a.d_view.extent(1) - 2 - 4 - 3 * 2;
}
test_dualview_combinations(unsigned int size, bool with_init) {
result = run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(
size, 3, with_init);
}
};
template <typename Scalar, class ViewType>
struct SumViewEntriesFunctor {
using value_type = Scalar;
ViewType fv;
SumViewEntriesFunctor(const ViewType& fv_) : fv(fv_) {}
KOKKOS_INLINE_FUNCTION
void operator()(const int i, value_type& total) const {
for (size_t j = 0; j < fv.extent(1); ++j) {
total += fv(i, j);
}
}
};
template <typename Scalar, class Device>
struct test_dual_view_deep_copy {
using scalar_type = Scalar;
using execution_space = Device;
template <typename ViewType>
void run_me(int n, const int m, const bool use_templ_sync) {
ViewType a, b;
if (n >= 0) {
a = ViewType("A", n, m);
b = ViewType("B", n, m);
} else {
n = 0;
}
const scalar_type sum_total = scalar_type(n * m);
Kokkos::deep_copy(a.d_view, 1);
if (use_templ_sync) {
a.template modify<typename ViewType::execution_space>();
a.template sync<typename ViewType::host_mirror_space>();
} else {
a.modify_device();
a.sync_host();
a.sync_host(Kokkos::DefaultExecutionSpace{});
}
// Check device view is initialized as expected
scalar_type a_d_sum = 0;
// Execute on the execution_space associated with t_dev's memory space
using t_dev_exec_space =
typename ViewType::t_dev::memory_space::execution_space;
Kokkos::parallel_reduce(
Kokkos::RangePolicy<t_dev_exec_space>(0, n),
SumViewEntriesFunctor<scalar_type, typename ViewType::t_dev>(a.d_view),
a_d_sum);
ASSERT_EQ(a_d_sum, sum_total);
// Check host view is synced as expected
scalar_type a_h_sum = 0;
for (size_t i = 0; i < a.h_view.extent(0); ++i)
for (size_t j = 0; j < a.h_view.extent(1); ++j) {
a_h_sum += a.h_view(i, j);
}
ASSERT_EQ(a_h_sum, sum_total);
// Test deep_copy
Kokkos::deep_copy(b, a);
if (use_templ_sync) {
b.template sync<typename ViewType::host_mirror_space>();
} else {
b.sync_host();
b.sync_host(Kokkos::DefaultExecutionSpace{});
}
// Perform same checks on b as done on a
// Check device view is initialized as expected
scalar_type b_d_sum = 0;
// Execute on the execution_space associated with t_dev's memory space
Kokkos::parallel_reduce(
Kokkos::RangePolicy<t_dev_exec_space>(0, n),
SumViewEntriesFunctor<scalar_type, typename ViewType::t_dev>(b.d_view),
b_d_sum);
ASSERT_EQ(b_d_sum, sum_total);
// Check host view is synced as expected
scalar_type b_h_sum = 0;
for (size_t i = 0; i < b.h_view.extent(0); ++i)
for (size_t j = 0; j < b.h_view.extent(1); ++j) {
b_h_sum += b.h_view(i, j);
}
ASSERT_EQ(b_h_sum, sum_total);
} // end run_me
test_dual_view_deep_copy() {
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(10, 5, true);
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(10, 5,
false);
// Test zero length but allocated (a.d_view.data!=nullptr but
// a.d_view.span()==0)
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(0, 5, true);
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(0, 5, false);
// Test default constructed view
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(-1, 5, true);
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>(-1, 5,
false);
}
};
template <typename Scalar, class Device, bool Initialize>
struct test_dualview_resize {
using scalar_type = Scalar;
using execution_space = Device;
template <typename ViewType>
void run_me() {
const unsigned int n = 10;
const unsigned int m = 5;
const unsigned int factor = 2;
ViewType a;
if constexpr (Initialize)
a = ViewType("A", n, m);
else
a = ViewType(Kokkos::view_alloc(Kokkos::WithoutInitializing, "A"), n, m);
Kokkos::deep_copy(a.d_view, 1);
/* Covers case "Resize on Device" */
a.modify_device();
if constexpr (Initialize)
Kokkos::resize(a, factor * n, factor * m);
else
Kokkos::resize(Kokkos::WithoutInitializing, a, factor * n, factor * m);
ASSERT_EQ(a.extent(0), n * factor);
ASSERT_EQ(a.extent(1), m * factor);
Kokkos::deep_copy(a.d_view, 1);
a.sync_host();
// Check device view is initialized as expected
// Execute on the execution_space associated with t_dev's memory space
using t_dev_exec_space =
typename ViewType::t_dev::memory_space::execution_space;
Kokkos::View<int, typename ViewType::t_dev::memory_space> errors_d(
"errors");
Kokkos::parallel_for(
Kokkos::MDRangePolicy<t_dev_exec_space, Kokkos::Rank<2>>(
{0, 0}, {a.d_view.extent(0), a.d_view.extent(1)}),
KOKKOS_LAMBDA(int i, int j) {
if (a.d_view(i, j) != 1) Kokkos::atomic_inc(errors_d.data());
});
int errors_d_scalar;
Kokkos::deep_copy(errors_d_scalar, errors_d);
// Check host view is synced as expected
int errors_h_scalar = 0;
for (size_t i = 0; i < a.h_view.extent(0); ++i)
for (size_t j = 0; j < a.h_view.extent(1); ++j) {
if (a.h_view(i, j) != 1) ++errors_h_scalar;
}
// Check
ASSERT_EQ(errors_d_scalar, 0);
ASSERT_EQ(errors_h_scalar, 0);
/* Covers case "Resize on Host" */
a.modify_host();
if constexpr (Initialize)
Kokkos::resize(a, n / factor, m / factor);
else
Kokkos::resize(Kokkos::WithoutInitializing, a, n / factor, m / factor);
ASSERT_EQ(a.extent(0), n / factor);
ASSERT_EQ(a.extent(1), m / factor);
a.sync_device();
a.sync_device(Kokkos::DefaultExecutionSpace{});
// Check device view is initialized as expected
Kokkos::deep_copy(errors_d, 0);
// Execute on the execution_space associated with t_dev's memory space
using t_dev_exec_space =
typename ViewType::t_dev::memory_space::execution_space;
Kokkos::parallel_for(
Kokkos::MDRangePolicy<t_dev_exec_space, Kokkos::Rank<2>>(
{0, 0}, {a.d_view.extent(0), a.d_view.extent(1)}),
KOKKOS_LAMBDA(int i, int j) {
if (a.d_view(i, j) != 1) Kokkos::atomic_inc(errors_d.data());
});
Kokkos::deep_copy(errors_d_scalar, errors_d);
// Check host view is synced as expected
errors_h_scalar = 0;
for (size_t i = 0; i < a.h_view.extent(0); ++i)
for (size_t j = 0; j < a.h_view.extent(1); ++j) {
if (a.h_view(i, j) != 1) ++errors_h_scalar;
}
// Check
ASSERT_EQ(errors_d_scalar, 0);
ASSERT_EQ(errors_h_scalar, 0);
} // end run_me
test_dualview_resize() {
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>();
}
};
template <typename Scalar, class Device, bool Initialize>
struct test_dualview_realloc {
using scalar_type = Scalar;
using execution_space = Device;
template <typename ViewType>
void run_me() {
const unsigned int n = 10;
const unsigned int m = 5;
ViewType a;
if constexpr (Initialize) {
a = ViewType("A", n, m);
Kokkos::realloc(a, n, m);
} else {
a = ViewType(Kokkos::view_alloc(Kokkos::WithoutInitializing, "A"), n, m);
Kokkos::realloc(Kokkos::WithoutInitializing, a, n, m);
}
ASSERT_EQ(a.extent(0), n);
ASSERT_EQ(a.extent(1), m);
Kokkos::deep_copy(a.d_view, 1);
a.modify_device();
a.sync_host();
// Check device view is initialized as expected
// Execute on the execution_space associated with t_dev's memory space
using t_dev_exec_space =
typename ViewType::t_dev::memory_space::execution_space;
Kokkos::View<int, typename ViewType::t_dev::memory_space> errors_d(
"errors");
Kokkos::parallel_for(
Kokkos::MDRangePolicy<t_dev_exec_space, Kokkos::Rank<2>>(
{0, 0}, {a.d_view.extent(0), a.d_view.extent(1)}),
KOKKOS_LAMBDA(int i, int j) {
if (a.d_view(i, j) != 1) Kokkos::atomic_inc(errors_d.data());
});
int errors_d_scalar;
Kokkos::deep_copy(errors_d_scalar, errors_d);
// Check host view is synced as expected
int errors_h_scalar = 0;
for (size_t i = 0; i < a.h_view.extent(0); ++i)
for (size_t j = 0; j < a.h_view.extent(1); ++j) {
if (a.h_view(i, j) != 1) ++errors_h_scalar;
}
// Check
ASSERT_EQ(errors_d_scalar, 0);
ASSERT_EQ(errors_h_scalar, 0);
} // end run_me
test_dualview_realloc() {
run_me<Kokkos::DualView<Scalar**, Kokkos::LayoutLeft, Device>>();
}
};
} // namespace Impl
template <typename Scalar, typename Device>
void test_dualview_combinations(unsigned int size, bool with_init) {
Impl::test_dualview_combinations<Scalar, Device> test(size, with_init);
ASSERT_EQ(test.result, 0);
}
template <typename Scalar, typename Device>
void test_dualview_alloc(unsigned int size) {
Impl::test_dualview_alloc<Scalar, Device> test(size);
ASSERT_TRUE(test.result);
}
template <typename Scalar, typename Device>
void test_dualview_copy_construction_and_assignment() {
Impl::test_dualview_copy_construction_and_assignment<Scalar, Device>()();
}
template <typename Scalar, typename Device>
void test_dualview_deep_copy() {
Impl::test_dual_view_deep_copy<Scalar, Device>();
}
template <typename Scalar, typename Device>
void test_dualview_realloc() {
Impl::test_dualview_realloc<Scalar, Device, false>();
Impl::test_dualview_realloc<Scalar, Device, true>();
}
template <typename Scalar, typename Device>
void test_dualview_resize() {
Impl::test_dualview_resize<Scalar, Device, false>();
Impl::test_dualview_resize<Scalar, Device, true>();
}
TEST(TEST_CATEGORY, dualview_combination) {
test_dualview_combinations<int, TEST_EXECSPACE>(10, true);
}
TEST(TEST_CATEGORY, dualview_alloc) {
test_dualview_alloc<int, TEST_EXECSPACE>(10);
}
TEST(TEST_CATEGORY, test_dualview_copy_construction_and_assignment) {
test_dualview_copy_construction_and_assignment<int, TEST_EXECSPACE>();
}
TEST(TEST_CATEGORY, dualview_combinations_without_init) {
test_dualview_combinations<int, TEST_EXECSPACE>(10, false);
}
TEST(TEST_CATEGORY, dualview_deep_copy) {
test_dualview_deep_copy<int, TEST_EXECSPACE>();
test_dualview_deep_copy<double, TEST_EXECSPACE>();
}
struct NoDefaultConstructor {
NoDefaultConstructor(int i_) : i(i_) {}
KOKKOS_FUNCTION operator int() const { return i; }
int i;
};
TEST(TEST_CATEGORY, dualview_realloc) {
test_dualview_realloc<int, TEST_EXECSPACE>();
Impl::test_dualview_realloc<NoDefaultConstructor, TEST_EXECSPACE,
/* Initialize */ false>();
}
TEST(TEST_CATEGORY, dualview_resize) {
test_dualview_resize<int, TEST_EXECSPACE>();
Impl::test_dualview_resize<NoDefaultConstructor, TEST_EXECSPACE,
/* Initialize */ false>();
}
namespace {
/**
*
* The following tests are a response to
* https://github.com/kokkos/kokkos/issues/3850
* and
* https://github.com/kokkos/kokkos/pull/3857
*
* DualViews were returning incorrect view types and taking
* inappropriate actions based on the templated view methods.
*
* Specifically, template view methods were always returning
* a device view if the memory space was UVM and a Kokkos::Device was passed.
* Sync/modify methods completely broke down So these tests exist to make sure
* that we keep the semantics of UVM DualViews intact.
*/
// modify if we have other UVM enabled backends
#if defined(KOKKOS_ENABLE_CUDA) || defined(KOKKOS_ENABLE_SYCL) || \
defined(KOKKOS_ENABLE_HIP) // OR other UVM builds
#define UVM_ENABLED_BUILD
#endif
#ifdef UVM_ENABLED_BUILD
template <typename ExecSpace>
struct UVMSpaceFor;
#endif
#ifdef KOKKOS_ENABLE_CUDA // specific to CUDA
template <>
struct UVMSpaceFor<Kokkos::Cuda> {
using type = Kokkos::CudaUVMSpace;
};
#endif
#ifdef KOKKOS_ENABLE_SYCL // specific to SYCL
template <>
struct UVMSpaceFor<Kokkos::Experimental::SYCL> {
using type = Kokkos::Experimental::SYCLSharedUSMSpace;
};
#endif
#ifdef KOKKOS_ENABLE_HIP // specific to HIP
template <>
struct UVMSpaceFor<Kokkos::HIP> {
using type = Kokkos::HIPManagedSpace;
};
#endif
#ifdef UVM_ENABLED_BUILD
template <>
struct UVMSpaceFor<Kokkos::DefaultHostExecutionSpace> {
using type = typename UVMSpaceFor<Kokkos::DefaultExecutionSpace>::type;
};
#else
template <typename ExecSpace>
struct UVMSpaceFor {
using type = typename ExecSpace::memory_space;
};
#endif
using ExecSpace = Kokkos::DefaultExecutionSpace;
using MemSpace = typename UVMSpaceFor<Kokkos::DefaultExecutionSpace>::type;
using DeviceType = Kokkos::Device<ExecSpace, MemSpace>;
using DualViewType = Kokkos::DualView<double*, Kokkos::LayoutLeft, DeviceType>;
using d_device = DeviceType;
using h_device = Kokkos::Device<
Kokkos::DefaultHostExecutionSpace,
typename UVMSpaceFor<Kokkos::DefaultHostExecutionSpace>::type>;
TEST(TEST_CATEGORY, dualview_device_correct_kokkos_device) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
auto v_d = dv.template view<d_device>();
using vdt = decltype(v_d);
using vdt_d = vdt::device_type;
using vdt_d_e = vdt_d::execution_space;
ASSERT_STREQ(vdt_d_e::name(), Kokkos::DefaultExecutionSpace::name());
}
TEST(TEST_CATEGORY, dualview_host_correct_kokkos_device) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
auto v_h = dv.template view<h_device>();
using vht = decltype(v_h);
using vht_d = vht::device_type;
using vht_d_e = vht_d::execution_space;
ASSERT_STREQ(vht_d_e::name(), Kokkos::DefaultHostExecutionSpace::name());
}
TEST(TEST_CATEGORY, dualview_host_modify_template_device_sync) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
dv.modify_host();
dv.template sync<d_device>();
EXPECT_TRUE(!dv.need_sync_device());
EXPECT_TRUE(!dv.need_sync_host());
dv.clear_sync_state();
}
TEST(TEST_CATEGORY, dualview_host_modify_template_device_execspace_sync) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
dv.modify_host();
dv.template sync<d_device::execution_space>();
EXPECT_TRUE(!dv.need_sync_device());
EXPECT_TRUE(!dv.need_sync_host());
dv.clear_sync_state();
}
TEST(TEST_CATEGORY, dualview_device_modify_template_host_sync) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
dv.modify_device();
dv.template sync<h_device>();
EXPECT_TRUE(!dv.need_sync_device());
EXPECT_TRUE(!dv.need_sync_host());
dv.clear_sync_state();
}
TEST(TEST_CATEGORY, dualview_device_modify_template_host_execspace_sync) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
dv.modify_device();
dv.template sync<h_device::execution_space>();
EXPECT_TRUE(!dv.need_sync_device());
EXPECT_TRUE(!dv.need_sync_host());
dv.clear_sync_state();
}
TEST(TEST_CATEGORY,
dualview_template_views_return_correct_executionspace_views) {
DualViewType dv("myView", 100);
dv.clear_sync_state();
using hvt = decltype(dv.view<typename Kokkos::DefaultHostExecutionSpace>());
using dvt = decltype(dv.view<typename Kokkos::DefaultExecutionSpace>());
ASSERT_STREQ(Kokkos::DefaultExecutionSpace::name(),
dvt::device_type::execution_space::name());
ASSERT_STREQ(Kokkos::DefaultHostExecutionSpace::name(),
hvt::device_type::execution_space::name());
}
} // anonymous namespace
} // namespace Test
#endif // KOKKOS_TEST_DUALVIEW_HPP