Files
lammps/lib/colvars/colvar_UIestimator.h
Giacomo Fiorin 85c394453c Update Colvars to version 2020-07-07
This update contains several fixes and small new features or usability
improvements.  Descriptions and authorship information can be accessed from
the pull requests listed below.

Skip the zero-step also when multiple run commands are executed in sequence (@giacomofiorin)
https://github.com/Colvars/colvars/pull/357

Do not accumulate data at step 0 (@giacomofiorin)
https://github.com/Colvars/colvars/pull/345

Support for symmetry permutations of atoms in RMSD (@jhenin)
https://github.com/Colvars/colvars/pull/344

Detect new grid parameters (@jhenin)
https://github.com/Colvars/colvars/pull/341

Only access the output streams in non-threaded regions (@giacomofiorin)
https://github.com/Colvars/colvars/pull/338

Fix incomplete setting of default colvarsRestartFrequency (@giacomofiorin)
https://github.com/Colvars/colvars/pull/334

Fix typo (@e-kwsm)
https://github.com/Colvars/colvars/pull/333

Convert the input keyword to lowercase in read_state_data_key (@HanatoK)
https://github.com/Colvars/colvars/pull/332

Implement reflecting b.c. for ext Lagrangian (@jhenin)
https://github.com/Colvars/colvars/pull/329
2020-09-09 18:19:21 -04:00

733 lines
29 KiB
C++

// -*- c++ -*-
// This file is part of the Collective Variables module (Colvars).
// The original version of Colvars and its updates are located at:
// https://github.com/Colvars/colvars
// Please update all Colvars source files before making any changes.
// If you wish to distribute your changes, please submit them to the
// Colvars repository at GitHub.
#ifndef COLVAR_UIESTIMATOR_H
#define COLVAR_UIESTIMATOR_H
#include <cmath>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
#include <typeinfo>
// only for colvar module!
// when integrated into other code, just remove this line and "...cvm::backup_file(...)"
#include "colvarmodule.h"
namespace UIestimator {
const int Y_SIZE = 21; // defines the range of extended CV with respect to a given CV
// For example, CV=10, width=1, Y_SIZE=21, then eCV=[0-20], having a size of 21
const int HALF_Y_SIZE = 10;
const int EXTENDED_X_SIZE = HALF_Y_SIZE;
const double EPSILON = 0.000001; // for comparison of float numbers
class n_matrix { // Stores the distribution matrix of n(x,y)
public:
n_matrix() {}
n_matrix(const std::vector<double> & lowerboundary_input, // lowerboundary of x
const std::vector<double> & upperboundary_input, // upperboundary of
const std::vector<double> & width_input, // width of x
const int y_size_input) { // size of y, for example, ysize=7, then when x=1, the distribution of y in [-2,4] is considered
int i;
this->lowerboundary = lowerboundary_input;
this->upperboundary = upperboundary_input;
this->width = width_input;
this->dimension = lowerboundary_input.size();
this->y_size = y_size_input; // keep in mind the internal (spare) matrix is stored in diagonal form
this->y_total_size = int(cvm::pow(double(y_size_input), double(dimension)) + EPSILON);
// the range of the matrix is [lowerboundary, upperboundary]
x_total_size = 1;
for (i = 0; i < dimension; i++) {
x_size.push_back(int((upperboundary_input[i] - lowerboundary_input[i]) / width_input[i] + EPSILON));
x_total_size *= x_size[i];
}
// initialize the internal matrix
matrix.reserve(x_total_size);
for (i = 0; i < x_total_size; i++) {
matrix.push_back(std::vector<int>(y_total_size, 0));
}
temp.resize(dimension);
}
int inline get_value(const std::vector<double> & x, const std::vector<double> & y) {
return matrix[convert_x(x)][convert_y(x, y)];
}
void inline set_value(const std::vector<double> & x, const std::vector<double> & y, const int value) {
matrix[convert_x(x)][convert_y(x,y)] = value;
}
void inline increase_value(const std::vector<double> & x, const std::vector<double> & y, const int value) {
matrix[convert_x(x)][convert_y(x,y)] += value;
}
private:
std::vector<double> lowerboundary;
std::vector<double> upperboundary;
std::vector<double> width;
int dimension;
std::vector<int> x_size; // the size of x in each dimension
int x_total_size; // the size of x of the internal matrix
int y_size; // the size of y in each dimension
int y_total_size; // the size of y of the internal matrix
std::vector<std::vector<int> > matrix; // the internal matrix
std::vector<int> temp; // this vector is used in convert_x and convert_y to save computational resource
int convert_x(const std::vector<double> & x) { // convert real x value to its interal index
int i, j;
for (i = 0; i < dimension; i++) {
temp[i] = int((x[i] - lowerboundary[i]) / width[i] + EPSILON);
}
int index = 0;
for (i = 0; i < dimension; i++) {
if (i + 1 < dimension) {
int x_temp = 1;
for (j = i + 1; j < dimension; j++)
x_temp *= x_size[j];
index += temp[i] * x_temp;
}
else
index += temp[i];
}
return index;
}
int convert_y(const std::vector<double> & x, const std::vector<double> & y) { // convert real y value to its interal index
int i;
for (i = 0; i < dimension; i++) {
temp[i] = int(round((round(y[i] / width[i] + EPSILON) - round(x[i] / width[i] + EPSILON)) + (y_size - 1) / 2 + EPSILON));
}
int index = 0;
for (i = 0; i < dimension; i++) {
if (i + 1 < dimension)
index += temp[i] * int(cvm::pow(double(y_size), double(dimension - i - 1)) + EPSILON);
else
index += temp[i];
}
return index;
}
double round(double r) {
return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
}
};
// vector, store the sum_x, sum_x_square, count_y
template <typename T>
class n_vector {
public:
n_vector() {}
n_vector(const std::vector<double> & lowerboundary_input, // lowerboundary of x
const std::vector<double> & upperboundary_input, // upperboundary of
const std::vector<double> & width_input, // width of x
const int y_size_input, // size of y, for example, ysize=7, then when x=1, the distribution of y in [-2,4] is considered
const T & default_value) { // the default value of T
this->width = width_input;
this->dimension = lowerboundary_input.size();
x_total_size = 1;
for (int i = 0; i < dimension; i++) {
this->lowerboundary.push_back(lowerboundary_input[i] - (y_size_input - 1) / 2 * width_input[i] - EPSILON);
this->upperboundary.push_back(upperboundary_input[i] + (y_size_input - 1) / 2 * width_input[i] + EPSILON);
x_size.push_back(int((this->upperboundary[i] - this->lowerboundary[i]) / this->width[i] + EPSILON));
x_total_size *= x_size[i];
}
// initialize the internal vector
vector.resize(x_total_size, default_value);
temp.resize(dimension);
}
const T inline get_value(const std::vector<double> & x) {
return vector[convert_x(x)];
}
void inline set_value(const std::vector<double> & x, const T value) {
vector[convert_x(x)] = value;
}
void inline increase_value(const std::vector<double> & x, const T value) {
vector[convert_x(x)] += value;
}
private:
std::vector<double> lowerboundary;
std::vector<double> upperboundary;
std::vector<double> width;
int dimension;
std::vector<int> x_size; // the size of x in each dimension
int x_total_size; // the size of x of the internal matrix
std::vector<T> vector; // the internal vector
std::vector<int> temp; // this vector is used in convert_x and convert_y to save computational resource
int convert_x(const std::vector<double> & x) { // convert real x value to its interal index
int i, j;
for (i = 0; i < dimension; i++) {
temp[i] = int((x[i] - lowerboundary[i]) / width[i] + EPSILON);
}
int index = 0;
for (i = 0; i < dimension; i++) {
if (i + 1 < dimension) {
int x_temp = 1;
for (j = i + 1; j < dimension; j++)
x_temp *= x_size[j];
index += temp[i] * x_temp;
}
else
index += temp[i];
}
return index;
}
};
class UIestimator { // the implemension of UI estimator
public:
UIestimator() {}
//called when (re)start an eabf simulation
UIestimator(const std::vector<double> & lowerboundary_input,
const std::vector<double> & upperboundary_input,
const std::vector<double> & width_input,
const std::vector<double> & krestr_input, // force constant in eABF
const std::string & output_filename_input, // the prefix of output files
const int output_freq_input,
const bool restart_input, // whether restart from a .count and a .grad file
const std::vector<std::string> & input_filename_input, // the prefixes of input files
const double temperature_input) {
// initialize variables
this->lowerboundary = lowerboundary_input;
this->upperboundary = upperboundary_input;
this->width = width_input;
this->krestr = krestr_input;
this->output_filename = output_filename_input;
this->output_freq = output_freq_input;
this->restart = restart_input;
this->input_filename = input_filename_input;
this->temperature = temperature_input;
int i, j;
dimension = lowerboundary.size();
for (i = 0; i < dimension; i++) {
sum_x.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
sum_x_square.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
x_av.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
sigma_square.push_back(n_vector<double>(lowerboundary, upperboundary, width, Y_SIZE, 0.0));
}
count_y = n_vector<int>(lowerboundary, upperboundary, width, Y_SIZE, 0);
distribution_x_y = n_matrix(lowerboundary, upperboundary, width, Y_SIZE);
grad = n_vector<std::vector<double> >(lowerboundary, upperboundary, width, 1, std::vector<double>(dimension, 0.0));
count = n_vector<int>(lowerboundary, upperboundary, width, 1, 0);
written = false;
written_1D = false;
if (dimension == 1) {
std::vector<double> upperboundary_temp = upperboundary;
upperboundary_temp[0] = upperboundary[0] + width[0];
oneD_pmf = n_vector<double>(lowerboundary, upperboundary_temp, width, 1, 0.0);
}
if (restart == true) {
input_grad = n_vector<std::vector<double> >(lowerboundary, upperboundary, width, 1, std::vector<double>(dimension, 0.0));
input_count = n_vector<int>(lowerboundary, upperboundary, width, 1, 0);
// initialize input_Grad and input_count
// the loop_flag is a n-dimensional vector, increae from lowerboundary to upperboundary when looping
std::vector<double> loop_flag(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i];
}
i = 0;
while (i >= 0) {
for (j = 0; j < dimension; j++) {
input_grad.set_value(loop_flag, std::vector<double>(dimension,0));
}
input_count.set_value(loop_flag, 0);
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag[i] += width[i];
if (loop_flag[i] > upperboundary[i] - width[i] + EPSILON) {
loop_flag[i] = lowerboundary[i];
i--;
}
else
break;
}
}
read_inputfiles(input_filename);
}
}
~UIestimator() {}
// called from MD engine every step
bool update(cvm::step_number step, std::vector<double> x, std::vector<double> y) {
int i;
for (i = 0; i < dimension; i++) {
// for dihedral RC, it is possible that x = 179 and y = -179, should correct it
// may have problem, need to fix
if (x[i] > 150 && y[i] < -150) {
y[i] += 360;
}
if (x[i] < -150 && y[i] > 150) {
y[i] -= 360;
}
if (x[i] < lowerboundary[i] - EXTENDED_X_SIZE * width[i] + EPSILON || x[i] > upperboundary[i] + EXTENDED_X_SIZE * width[i] - EPSILON \
|| y[i] - x[i] < -HALF_Y_SIZE * width[i] + EPSILON || y[i] - x[i] > HALF_Y_SIZE * width[i] - EPSILON \
|| y[i] - lowerboundary[i] < -HALF_Y_SIZE * width[i] + EPSILON || y[i] - upperboundary[i] > HALF_Y_SIZE * width[i] - EPSILON)
return false;
}
for (i = 0; i < dimension; i++) {
sum_x[i].increase_value(y, x[i]);
sum_x_square[i].increase_value(y, x[i] * x[i]);
}
count_y.increase_value(y, 1);
for (i = 0; i < dimension; i++) {
// adapt colvars precision
if (x[i] < lowerboundary[i] + EPSILON || x[i] > upperboundary[i] - EPSILON)
return false;
}
distribution_x_y.increase_value(x, y, 1);
return true;
}
// update the output_filename
void update_output_filename(const std::string& filename) {
output_filename = filename;
}
private:
std::vector<n_vector<double> > sum_x; // the sum of x in each y bin
std::vector<n_vector<double> > sum_x_square; // the sum of x in each y bin
n_vector<int> count_y; // the distribution of y
n_matrix distribution_x_y; // the distribution of <x, y> pair
int dimension;
std::vector<double> lowerboundary;
std::vector<double> upperboundary;
std::vector<double> width;
std::vector<double> krestr;
std::string output_filename;
int output_freq;
bool restart;
std::vector<std::string> input_filename;
double temperature;
n_vector<std::vector<double> > grad;
n_vector<int> count;
n_vector<double> oneD_pmf;
n_vector<std::vector<double> > input_grad;
n_vector<int> input_count;
// used in double integration
std::vector<n_vector<double> > x_av;
std::vector<n_vector<double> > sigma_square;
bool written;
bool written_1D;
public:
// calculate gradients from the internal variables
void calc_pmf() {
int norm;
int i, j, k;
std::vector<double> loop_flag(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i] - HALF_Y_SIZE * width[i];
}
i = 0;
while (i >= 0) {
norm = count_y.get_value(loop_flag) > 0 ? count_y.get_value(loop_flag) : 1;
for (j = 0; j < dimension; j++) {
x_av[j].set_value(loop_flag, sum_x[j].get_value(loop_flag) / norm);
sigma_square[j].set_value(loop_flag, sum_x_square[j].get_value(loop_flag) / norm - x_av[j].get_value(loop_flag) * x_av[j].get_value(loop_flag));
}
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag[i] += width[i];
if (loop_flag[i] > upperboundary[i] + HALF_Y_SIZE * width[i] - width[i] + EPSILON) {
loop_flag[i] = lowerboundary[i] - HALF_Y_SIZE * width[i];
i--;
}
else
break;
}
}
// double integration
std::vector<double> av(dimension, 0);
std::vector<double> diff_av(dimension, 0);
std::vector<double> loop_flag_x(dimension, 0);
std::vector<double> loop_flag_y(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag_x[i] = lowerboundary[i];
loop_flag_y[i] = loop_flag_x[i] - HALF_Y_SIZE * width[i];
}
i = 0;
while (i >= 0) {
norm = 0;
for (k = 0; k < dimension; k++) {
av[k] = 0;
diff_av[k] = 0;
loop_flag_y[k] = loop_flag_x[k] - HALF_Y_SIZE * width[k];
}
j = 0;
while (j >= 0) {
norm += distribution_x_y.get_value(loop_flag_x, loop_flag_y);
for (k = 0; k < dimension; k++) {
if (sigma_square[k].get_value(loop_flag_y) > EPSILON || sigma_square[k].get_value(loop_flag_y) < -EPSILON)
av[k] += distribution_x_y.get_value(loop_flag_x, loop_flag_y) * ( (loop_flag_x[k] + 0.5 * width[k]) - x_av[k].get_value(loop_flag_y)) / sigma_square[k].get_value(loop_flag_y);
diff_av[k] += distribution_x_y.get_value(loop_flag_x, loop_flag_y) * (loop_flag_x[k] - loop_flag_y[k]);
}
// iterate over any dimensions
j = dimension - 1;
while (j >= 0) {
loop_flag_y[j] += width[j];
if (loop_flag_y[j] > loop_flag_x[j] + HALF_Y_SIZE * width[j] - width[j] + EPSILON) {
loop_flag_y[j] = loop_flag_x[j] - HALF_Y_SIZE * width[j];
j--;
}
else
break;
}
}
std::vector<double> grad_temp(dimension, 0);
for (k = 0; k < dimension; k++) {
diff_av[k] /= (norm > 0 ? norm : 1);
av[k] = cvm::boltzmann() * temperature * av[k] / (norm > 0 ? norm : 1);
grad_temp[k] = av[k] - krestr[k] * diff_av[k];
}
grad.set_value(loop_flag_x, grad_temp);
count.set_value(loop_flag_x, norm);
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag_x[i] += width[i];
if (loop_flag_x[i] > upperboundary[i] - width[i] + EPSILON) {
loop_flag_x[i] = lowerboundary[i];
i--;
}
else
break;
}
}
}
// calculate 1D pmf
void calc_1D_pmf()
{
std::vector<double> last_position(1, 0);
std::vector<double> position(1, 0);
double min = 0;
double dG = 0;
double i;
oneD_pmf.set_value(lowerboundary, 0);
last_position = lowerboundary;
for (i = lowerboundary[0] + width[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
position[0] = i + EPSILON;
if (restart == false || input_count.get_value(last_position) == 0) {
dG = oneD_pmf.get_value(last_position) + grad.get_value(last_position)[0] * width[0];
}
else {
dG = oneD_pmf.get_value(last_position) + ((grad.get_value(last_position)[0] * count.get_value(last_position) + input_grad.get_value(last_position)[0] * input_count.get_value(last_position)) / (count.get_value(last_position) + input_count.get_value(last_position))) * width[0];
}
if (dG < min)
min = dG;
oneD_pmf.set_value(position, dG);
last_position[0] = i + EPSILON;
}
for (i = lowerboundary[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
position[0] = i + EPSILON;
oneD_pmf.set_value(position, oneD_pmf.get_value(position) - min);
}
}
// write 1D pmf
void write_1D_pmf() {
std::string pmf_filename = output_filename + ".UI.pmf";
// only for colvars module!
if (written_1D) cvm::backup_file(pmf_filename.c_str());
std::ostream* ofile_pmf = cvm::proxy->output_stream(pmf_filename.c_str());
std::vector<double> position(1, 0);
for (double i = lowerboundary[0]; i < upperboundary[0] + EPSILON; i += width[0]) {
*ofile_pmf << i << " ";
position[0] = i + EPSILON;
*ofile_pmf << oneD_pmf.get_value(position) << std::endl;
}
cvm::proxy->close_output_stream(pmf_filename.c_str());
written_1D = true;
}
// write heads of the output files
void writehead(std::ostream& os) const {
os << "# " << dimension << std::endl;
for (int i = 0; i < dimension; i++) {
os << "# " << lowerboundary[i] << " " << width[i] << " " << int((upperboundary[i] - lowerboundary[i]) / width[i] + EPSILON) << " " << 0 << std::endl;
}
os << std::endl;
}
// write interal data, used for testing
void write_interal_data() {
std::string internal_filename = output_filename + ".UI.internal";
std::ostream* ofile_internal = cvm::proxy->output_stream(internal_filename.c_str());
std::vector<double> loop_flag(dimension, 0);
for (int i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i];
}
int n = 0;
while (n >= 0) {
for (int j = 0; j < dimension; j++) {
*ofile_internal << loop_flag[j] + 0.5 * width[j] << " ";
}
for (int k = 0; k < dimension; k++) {
*ofile_internal << grad.get_value(loop_flag)[k] << " ";
}
std::vector<double> ii(dimension,0);
for (double i = loop_flag[0] - 10; i < loop_flag[0] + 10 + EPSILON; i+= width[0]) {
for (double j = loop_flag[1] - 10; j< loop_flag[1] + 10 + EPSILON; j+=width[1]) {
ii[0] = i;
ii[1] = j;
*ofile_internal << i <<" "<<j<<" "<< distribution_x_y.get_value(loop_flag,ii)<< " ";
}
}
*ofile_internal << std::endl;
// iterate over any dimensions
n = dimension - 1;
while (n >= 0) {
loop_flag[n] += width[n];
if (loop_flag[n] > upperboundary[n] - width[n] + EPSILON) {
loop_flag[n] = lowerboundary[n];
n--;
}
else
break;
}
}
cvm::proxy->close_output_stream(internal_filename.c_str());
}
// write output files
void write_files() {
std::string grad_filename = output_filename + ".UI.grad";
std::string hist_filename = output_filename + ".UI.hist.grad";
std::string count_filename = output_filename + ".UI.count";
int i, j;
//
// only for colvars module!
if (written) cvm::backup_file(grad_filename.c_str());
//if (written) cvm::backup_file(hist_filename.c_str());
if (written) cvm::backup_file(count_filename.c_str());
std::ostream* ofile = cvm::proxy->output_stream(grad_filename.c_str());
std::ostream* ofile_hist = cvm::proxy->output_stream(hist_filename.c_str(), std::ios::app);
std::ostream* ofile_count = cvm::proxy->output_stream(count_filename.c_str());
writehead(*ofile);
writehead(*ofile_hist);
writehead(*ofile_count);
if (dimension == 1) {
calc_1D_pmf();
write_1D_pmf();
}
std::vector<double> loop_flag(dimension, 0);
for (i = 0; i < dimension; i++) {
loop_flag[i] = lowerboundary[i];
}
i = 0;
while (i >= 0) {
for (j = 0; j < dimension; j++) {
*ofile << loop_flag[j] + 0.5 * width[j] << " ";
*ofile_hist << loop_flag[j] + 0.5 * width[j] << " ";
*ofile_count << loop_flag[j] + 0.5 * width[j] << " ";
}
if (restart == false) {
for (j = 0; j < dimension; j++) {
*ofile << grad.get_value(loop_flag)[j] << " ";
*ofile_hist << grad.get_value(loop_flag)[j] << " ";
}
*ofile << std::endl;
*ofile_hist << std::endl;
*ofile_count << count.get_value(loop_flag) << " " <<std::endl;
}
else {
double final_grad = 0;
for (j = 0; j < dimension; j++) {
int total_count_temp = (count.get_value(loop_flag) + input_count.get_value(loop_flag));
if (input_count.get_value(loop_flag) == 0)
final_grad = grad.get_value(loop_flag)[j];
else
final_grad = ((grad.get_value(loop_flag)[j] * count.get_value(loop_flag) + input_grad.get_value(loop_flag)[j] * input_count.get_value(loop_flag)) / total_count_temp);
*ofile << final_grad << " ";
*ofile_hist << final_grad << " ";
}
*ofile << std::endl;
*ofile_hist << std::endl;
*ofile_count << (count.get_value(loop_flag) + input_count.get_value(loop_flag)) << " " <<std::endl;
}
// iterate over any dimensions
i = dimension - 1;
while (i >= 0) {
loop_flag[i] += width[i];
if (loop_flag[i] > upperboundary[i] - width[i] + EPSILON) {
loop_flag[i] = lowerboundary[i];
i--;
*ofile << std::endl;
*ofile_hist << std::endl;
*ofile_count << std::endl;
}
else
break;
}
}
cvm::proxy->close_output_stream(grad_filename.c_str());
cvm::proxy->close_output_stream(hist_filename.c_str());
cvm::proxy->close_output_stream(count_filename.c_str());
written = true;
}
// read input files
void read_inputfiles(const std::vector<std::string> filename)
{
char sharp;
double nothing;
int dimension_temp;
int i, j, k, l, m;
std::vector<double> loop_bin_size(dimension, 0);
std::vector<double> position_temp(dimension, 0);
std::vector<double> grad_temp(dimension, 0);
int count_temp = 0;
for (i = 0; i < int(filename.size()); i++) {
int size = 1 , size_temp = 0;
std::string count_filename = filename[i] + ".UI.count";
std::string grad_filename = filename[i] + ".UI.grad";
std::ifstream count_file(count_filename.c_str(), std::ios::in);
std::ifstream grad_file(grad_filename.c_str(), std::ios::in);
count_file >> sharp >> dimension_temp;
grad_file >> sharp >> dimension_temp;
for (j = 0; j < dimension; j++) {
count_file >> sharp >> nothing >> nothing >> size_temp >> nothing;
grad_file >> sharp >> nothing >> nothing >> nothing >> nothing;
size *= size_temp;
}
for (j = 0; j < size; j++) {
do {
for (k = 0; k < dimension; k++) {
count_file >> position_temp[k];
grad_file >> nothing;
}
for (l = 0; l < dimension; l++) {
grad_file >> grad_temp[l];
}
count_file >> count_temp;
}
while (position_temp[i] < lowerboundary[i] - EPSILON || position_temp[i] > upperboundary[i] + EPSILON);
if (count_temp == 0) {
continue;
}
for (m = 0; m < dimension; m++) {
grad_temp[m] = (grad_temp[m] * count_temp + input_grad.get_value(position_temp)[m] * input_count.get_value(position_temp)) / (count_temp + input_count.get_value(position_temp));
}
input_grad.set_value(position_temp, grad_temp);
input_count.increase_value(position_temp, count_temp);
}
count_file.close();
grad_file.close();
}
}
};
}
#endif