Files
lammps/src/ML-IAP/compute_mliap.cpp
2021-06-29 10:44:32 -04:00

374 lines
11 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Aidan Thompson (SNL)
------------------------------------------------------------------------- */
#include <cstring>
#include "mliap_data.h"
#include "mliap_model_linear.h"
#include "mliap_model_quadratic.h"
#include "mliap_descriptor_snap.h"
#ifdef MLIAP_PYTHON
#include "mliap_model_python.h"
#endif
#include "compute_mliap.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "neighbor.h"
#include "neigh_request.h"
#include "force.h"
#include "pair.h"
#include "comm.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
enum{SCALAR,VECTOR,ARRAY};
ComputeMLIAP::ComputeMLIAP(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), mliaparray(nullptr),
mliaparrayall(nullptr), map(nullptr)
{
array_flag = 1;
extarray = 0;
if (narg < 4)
error->all(FLERR,"Illegal compute mliap command");
// default values
gradgradflag = 1;
// set flags for required keywords
int modelflag = 0;
int descriptorflag = 0;
// process keywords
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"model") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute mliap command");
if (strcmp(arg[iarg+1],"linear") == 0) {
model = new MLIAPModelLinear(lmp);
iarg += 2;
} else if (strcmp(arg[iarg+1],"quadratic") == 0) {
model = new MLIAPModelQuadratic(lmp);
iarg += 2;
}
#ifdef MLIAP_PYTHON
else if (strcmp(arg[iarg+1],"mliappy") == 0) {
model = new MLIAPModelPython(lmp);
iarg += 2;
}
#endif
else error->all(FLERR,"Illegal compute mliap command");
modelflag = 1;
} else if (strcmp(arg[iarg],"descriptor") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal compute mliap command");
if (strcmp(arg[iarg+1],"sna") == 0) {
if (iarg+3 > narg) error->all(FLERR,"Illegal compute mliap command");
descriptor = new MLIAPDescriptorSNAP(lmp,arg[iarg+2]);
iarg += 3;
} else error->all(FLERR,"Illegal compute mliap command");
descriptorflag = 1;
} else if (strcmp(arg[iarg],"gradgradflag") == 0) {
if (iarg+1 > narg) error->all(FLERR,"Illegal compute mliap command");
gradgradflag = atoi(arg[iarg+1]);
if (gradgradflag != 0 && gradgradflag != 1)
error->all(FLERR,"Illegal compute mliap command");
iarg += 2;
} else
error->all(FLERR,"Illegal compute mliap command");
}
if (modelflag == 0 || descriptorflag == 0)
error->all(FLERR,"Illegal compute_style command");
// need to tell model how many descriptors
// so it can figure out how many parameters
model->set_ndescriptors(descriptor->ndescriptors);
// create a minimal map, placeholder for more general map
memory->create(map,atom->ntypes+1,"compute_mliap:map");
for (int i = 1; i <= atom->ntypes; i++)
map[i] = i-1;
data = new MLIAPData(lmp, gradgradflag, map, model, descriptor);
size_array_rows = data->size_array_rows;
size_array_cols = data->size_array_cols;
lastcol = size_array_cols-1;
}
/* ---------------------------------------------------------------------- */
ComputeMLIAP::~ComputeMLIAP()
{
modify->delete_compute(id_virial);
memory->destroy(mliaparray);
memory->destroy(mliaparrayall);
memory->destroy(map);
delete data;
delete model;
delete descriptor;
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::init()
{
if (force->pair == nullptr)
error->all(FLERR,"Compute mliap requires a pair style be defined");
if (descriptor->cutmax > force->pair->cutforce)
error->all(FLERR,"Compute mliap cutoff is longer than pairwise cutoff");
// need an occasional full neighbor list
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->pair = 0;
neighbor->requests[irequest]->compute = 1;
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
neighbor->requests[irequest]->occasional = 1;
int count = 0;
for (int i = 0; i < modify->ncompute; i++)
if (strcmp(modify->compute[i]->style,"mliap") == 0) count++;
if (count > 1 && comm->me == 0)
error->warning(FLERR,"More than one compute mliap");
// initialize model and descriptor
model->init();
descriptor->init();
data->init();
// consistency checks
if (data->nelements != atom->ntypes)
error->all(FLERR,"nelements must equal ntypes");
// allocate memory for global array
memory->create(mliaparray,size_array_rows,size_array_cols,
"compute_mliap:mliaparray");
memory->create(mliaparrayall,size_array_rows,size_array_cols,
"compute_mliap:mliaparrayall");
array = mliaparrayall;
// find compute for reference energy
std::string id_pe = std::string("thermo_pe");
int ipe = modify->find_compute(id_pe);
if (ipe == -1)
error->all(FLERR,"compute thermo_pe does not exist.");
c_pe = modify->compute[ipe];
// add compute for reference virial tensor
id_virial = id + std::string("_press");
std::string pcmd = id_virial + " all pressure NULL virial";
modify->add_compute(pcmd);
int ivirial = modify->find_compute(id_virial);
if (ivirial == -1)
error->all(FLERR,"compute mliap_press does not exist.");
c_virial = modify->compute[ivirial];
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::init_list(int /*id*/, NeighList *ptr)
{
list = ptr;
}
/* ---------------------------------------------------------------------- */
void ComputeMLIAP::compute_array()
{
int nall = atom->nlocal + atom->nghost;
invoked_array = update->ntimestep;
// clear global array
for (int irow = 0; irow < size_array_rows; irow++)
for (int jcol = 0; jcol < size_array_cols; jcol++)
mliaparray[irow][jcol] = 0.0;
// invoke full neighbor list (will copy or build if necessary)
neighbor->build_one(list);
data->generate_neighdata(list);
// compute descriptors
descriptor->compute_descriptors(data);
if (gradgradflag == 1) {
// calculate double gradient w.r.t. parameters and descriptors
model->compute_gradgrads(data);
// calculate gradients of forces w.r.t. parameters
descriptor->compute_force_gradients(data);
} else if (gradgradflag == 0) {
// calculate descriptor gradients
descriptor->compute_descriptor_gradients(data);
// calculate gradients of forces w.r.t. parameters
model->compute_force_gradients(data);
} else error->all(FLERR,"Invalid value for gradgradflag");
// accumulate descriptor gradient contributions to global array
for (int ielem = 0; ielem < data->nelements; ielem++) {
const int elemoffset = data->nparams*ielem;
for (int jparam = 0; jparam < data->nparams; jparam++) {
for (int i = 0; i < nall; i++) {
double *gradforcei = data->gradforce[i]+elemoffset;
tagint irow = 3*(atom->tag[i]-1)+1;
mliaparray[irow][jparam+elemoffset] += gradforcei[jparam];
mliaparray[irow+1][jparam+elemoffset] += gradforcei[jparam+data->yoffset];
mliaparray[irow+2][jparam+elemoffset] += gradforcei[jparam+data->zoffset];
}
}
}
// copy forces to global array
for (int i = 0; i < atom->nlocal; i++) {
int iglobal = atom->tag[i];
int irow = 3*(iglobal-1)+1;
mliaparray[irow][lastcol] = atom->f[i][0];
mliaparray[irow+1][lastcol] = atom->f[i][1];
mliaparray[irow+2][lastcol] = atom->f[i][2];
}
// accumulate bispectrum virial contributions to global array
dbdotr_compute();
// copy energy gradient contributions to global array
for (int ielem = 0; ielem < data->nelements; ielem++) {
const int elemoffset = data->nparams*ielem;
for (int jparam = 0; jparam < data->nparams; jparam++)
mliaparray[0][jparam+elemoffset] = data->egradient[jparam+elemoffset];
}
// sum up over all processes
MPI_Allreduce(&mliaparray[0][0],&mliaparrayall[0][0],size_array_rows*size_array_cols,MPI_DOUBLE,MPI_SUM,world);
// copy energy to last column
int irow = 0;
double reference_energy = c_pe->compute_scalar();
mliaparrayall[irow++][lastcol] = reference_energy;
// copy virial stress to last column
// switch to Voigt notation
c_virial->compute_vector();
irow += 3*data->natoms;
mliaparrayall[irow++][lastcol] = c_virial->vector[0];
mliaparrayall[irow++][lastcol] = c_virial->vector[1];
mliaparrayall[irow++][lastcol] = c_virial->vector[2];
mliaparrayall[irow++][lastcol] = c_virial->vector[5];
mliaparrayall[irow++][lastcol] = c_virial->vector[4];
mliaparrayall[irow++][lastcol] = c_virial->vector[3];
}
/* ----------------------------------------------------------------------
compute global virial contributions via summing r_i.dB^j/dr_i over
own & ghost atoms
------------------------------------------------------------------------- */
void ComputeMLIAP::dbdotr_compute()
{
double **x = atom->x;
int irow0 = 1+data->ndims_force*data->natoms;
// sum over bispectrum contributions to forces
// on all particles including ghosts
int nall = atom->nlocal + atom->nghost;
for (int i = 0; i < nall; i++)
for (int ielem = 0; ielem < data->nelements; ielem++) {
const int elemoffset = data->nparams*ielem;
double *gradforcei = data->gradforce[i]+elemoffset;
for (int jparam = 0; jparam < data->nparams; jparam++) {
double dbdx = gradforcei[jparam];
double dbdy = gradforcei[jparam+data->yoffset];
double dbdz = gradforcei[jparam+data->zoffset];
int irow = irow0;
mliaparray[irow++][jparam+elemoffset] += dbdx*x[i][0];
mliaparray[irow++][jparam+elemoffset] += dbdy*x[i][1];
mliaparray[irow++][jparam+elemoffset] += dbdz*x[i][2];
mliaparray[irow++][jparam+elemoffset] += dbdz*x[i][1];
mliaparray[irow++][jparam+elemoffset] += dbdz*x[i][0];
mliaparray[irow++][jparam+elemoffset] += dbdy*x[i][0];
}
}
}
/* ----------------------------------------------------------------------
memory usage
------------------------------------------------------------------------- */
double ComputeMLIAP::memory_usage()
{
double bytes = (double)size_array_rows*size_array_cols *
sizeof(double); // mliaparray
bytes += (double)size_array_rows*size_array_cols *
sizeof(double); // mliaparrayall
int n = atom->ntypes+1;
bytes += (double)n*sizeof(int); // map
bytes += descriptor->memory_usage(); // Descriptor object
bytes += model->memory_usage(); // Model object
bytes += data->memory_usage(); // Data object
return bytes;
}