Files
lammps/src/compute_reduce_chunk.cpp
2024-01-21 15:53:35 -05:00

388 lines
12 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_reduce_chunk.h"
#include "arg_info.h"
#include "atom.h"
#include "compute.h"
#include "compute_chunk_atom.h"
#include "error.h"
#include "fix.h"
#include "input.h"
#include "memory.h"
#include "modify.h"
#include "update.h"
#include "variable.h"
#include <cstring>
using namespace LAMMPS_NS;
enum { SUM, MINN, MAXX };
static constexpr double BIG = 1.0e20;
/* ---------------------------------------------------------------------- */
ComputeReduceChunk::ComputeReduceChunk(LAMMPS *lmp, int narg, char **arg) :
ComputeChunk(lmp, narg, arg), vlocal(nullptr), vglobal(nullptr), alocal(nullptr),
aglobal(nullptr), varatom(nullptr), ichunk(nullptr)
{
if (narg < 6) utils::missing_cmd_args(FLERR, "compute reduce/chunk", error);
ComputeChunk::init();
// mode
if (strcmp(arg[4], "sum") == 0)
mode = SUM;
else if (strcmp(arg[4], "min") == 0)
mode = MINN;
else if (strcmp(arg[4], "max") == 0)
mode = MAXX;
else
error->all(FLERR, "Unknown compute reduce/chunk mode: {}", arg[4]);
int iarg = 5;
// expand args if any have wildcard character "*"
int expand = 0;
char **earg;
int nargnew = utils::expand_args(FLERR, narg - iarg, &arg[iarg], 1, earg, lmp);
if (earg != &arg[iarg]) expand = 1;
arg = earg;
// parse values
values.clear();
for (iarg = 0; iarg < nargnew; iarg++) {
ArgInfo argi(arg[iarg]);
value_t val;
val.which = argi.get_type();
val.argindex = argi.get_index1();
val.id = argi.get_name();
val.val.c = nullptr;
if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi.get_dim() > 1))
error->all(FLERR, "Illegal compute reduce/chunk argument: {}", arg[iarg]);
values.push_back(val);
}
// if wildcard expansion occurred, free earg memory from expand_args()
if (expand) {
for (int i = 0; i < nargnew; i++) delete[] earg[i];
memory->sfree(earg);
}
// error check
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
val.val.c = modify->get_compute_by_id(val.id);
if (!val.val.c)
error->all(FLERR, "Compute ID {} for compute reduce/chunk does not exist", val.id);
if (!val.val.c->peratom_flag)
error->all(FLERR, "Compute reduce/chunk compute {} does not calculate per-atom values",
val.id);
if ((val.argindex == 0) && (val.val.c->size_peratom_cols != 0))
error->all(FLERR, "Compute reduce/chunk compute {} does not calculate a per-atom vector",
val.id);
if (val.argindex && (val.val.c->size_peratom_cols == 0))
error->all(FLERR, "Compute reduce/chunk compute {} does not calculate a per-atom array",
val.id);
if (val.argindex && (val.argindex > val.val.c->size_peratom_cols))
error->all(FLERR, "Compute reduce/chunk compute array {} is accessed out-of-range", val.id);
} else if (val.which == ArgInfo::FIX) {
val.val.f = modify->get_fix_by_id(val.id);
if (!val.val.f)
error->all(FLERR, "Fix ID {} for compute reduce/chunk does not exist", val.id);
if (!val.val.f->peratom_flag)
error->all(FLERR, "Compute reduce/chunk fix {} does not calculate per-atom values", val.id);
if ((val.argindex == 0) && (val.val.f->size_peratom_cols != 0))
error->all(FLERR, "Compute reduce/chunk fix {} does not calculate a per-atom vector",
val.id);
if (val.argindex && (val.val.f->size_peratom_cols == 0))
error->all(FLERR, "Compute reduce/chunk fix {} does not calculate a per-atom array",
val.id);
if (val.argindex && (val.argindex > val.val.f->size_peratom_cols))
error->all(FLERR, "Compute reduce/chunk fix {} array is accessed out-of-range", val.id);
} else if (val.which == ArgInfo::VARIABLE) {
val.val.v = input->variable->find(val.id.c_str());
if (val.val.v < 0)
error->all(FLERR, "Variable name {} for compute reduce/chunk does not exist", val.id);
if (input->variable->atomstyle(val.val.v) == 0)
error->all(FLERR, "Compute reduce/chunk variable is not atom-style variable");
}
}
// this compute produces either a vector or array
if (values.size() == 1) {
vector_flag = 1;
size_vector_variable = 1;
extvector = 0;
} else {
array_flag = 1;
size_array_rows_variable = 1;
size_array_cols = values.size();
extarray = 0;
}
// setup
if (mode == SUM)
initvalue = 0.0;
else if (mode == MINN)
initvalue = BIG;
else if (mode == MAXX)
initvalue = -BIG;
vlocal = vglobal = nullptr;
alocal = aglobal = nullptr;
maxatom = 0;
varatom = nullptr;
}
/* ---------------------------------------------------------------------- */
ComputeReduceChunk::~ComputeReduceChunk()
{
memory->destroy(vlocal);
memory->destroy(vglobal);
memory->destroy(alocal);
memory->destroy(aglobal);
memory->destroy(varatom);
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::init()
{
ComputeChunk::init();
// set indices of all computes,fixes,variables
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
val.val.c = modify->get_compute_by_id(val.id);
if (!val.val.c)
error->all(FLERR, "Compute ID {} for compute reduce/chunk does not exist", val.id);
} else if (val.which == ArgInfo::FIX) {
val.val.f = modify->get_fix_by_id(val.id);
if (!val.val.f)
error->all(FLERR, "Fix ID {} for compute reduce/chunk does not exist", val.id);
} else if (val.which == ArgInfo::VARIABLE) {
val.val.v = input->variable->find(val.id.c_str());
if (val.val.v < 0)
error->all(FLERR, "Variable name {} for compute reduce/chunk does not exist", val.id);
}
}
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::compute_vector()
{
ComputeChunk::compute_vector();
ichunk = cchunk->ichunk;
if (!nchunk) return;
if (nchunk > maxchunk) {
memory->destroy(vlocal);
memory->destroy(vglobal);
maxchunk = nchunk;
memory->create(vlocal, maxchunk, "reduce/chunk:vlocal");
memory->create(vglobal, maxchunk, "reduce/chunk:vglobal");
vector = vglobal;
}
// perform local reduction of single peratom value
compute_one(0, vlocal, 1);
// reduce the per-chunk values across all procs
if (mode == SUM)
MPI_Allreduce(vlocal, vglobal, nchunk, MPI_DOUBLE, MPI_SUM, world);
else if (mode == MINN)
MPI_Allreduce(vlocal, vglobal, nchunk, MPI_DOUBLE, MPI_MIN, world);
else if (mode == MAXX)
MPI_Allreduce(vlocal, vglobal, nchunk, MPI_DOUBLE, MPI_MAX, world);
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::compute_array()
{
ComputeChunk::compute_array();
ichunk = cchunk->ichunk;
if (!nchunk) return;
if (nchunk > maxchunk) {
memory->destroy(alocal);
memory->destroy(aglobal);
maxchunk = nchunk;
memory->create(alocal, maxchunk, values.size(), "reduce/chunk:alocal");
memory->create(aglobal, maxchunk, values.size(), "reduce/chunk:aglobal");
array = aglobal;
}
// perform local reduction of all peratom values
for (std::size_t m = 0; m < values.size(); m++) compute_one(m, &alocal[0][m], values.size());
// reduce the per-chunk values across all procs
if (mode == SUM)
MPI_Allreduce(&alocal[0][0], &aglobal[0][0], nchunk * values.size(), MPI_DOUBLE, MPI_SUM,
world);
else if (mode == MINN)
MPI_Allreduce(&alocal[0][0], &aglobal[0][0], nchunk * values.size(), MPI_DOUBLE, MPI_MIN,
world);
else if (mode == MAXX)
MPI_Allreduce(&alocal[0][0], &aglobal[0][0], nchunk * values.size(), MPI_DOUBLE, MPI_MAX,
world);
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::compute_one(int m, double *vchunk, int nstride)
{
// initialize per-chunk values in accumulation vector
for (std::size_t i = 0; i < values.size() * nchunk; i += nstride) vchunk[i] = initvalue;
// loop over my atoms
// use peratom input and chunk ID of each atom to update vector
int *mask = atom->mask;
int nlocal = atom->nlocal;
auto &val = values[m];
int index = -1;
// initialization in case it has not yet been run, e.g. when
// the compute was invoked right after it has been created
if (val.val.c == nullptr) init();
if (val.which == ArgInfo::COMPUTE) {
if (!(val.val.c->invoked_flag & Compute::INVOKED_PERATOM)) {
val.val.c->compute_peratom();
val.val.c->invoked_flag |= Compute::INVOKED_PERATOM;
}
if (val.argindex == 0) {
double *vcompute = val.val.c->vector_atom;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i] - 1;
if (index < 0) continue;
combine(vchunk[index * nstride], vcompute[i]);
}
} else {
double **acompute = val.val.c->array_atom;
int argindexm1 = val.argindex - 1;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i] - 1;
if (index < 0) continue;
combine(vchunk[index * nstride], acompute[i][argindexm1]);
}
}
// access fix fields, check if fix frequency is a match
} else if (val.which == ArgInfo::FIX) {
if (update->ntimestep % val.val.f->peratom_freq)
error->all(FLERR, "Fix used in compute reduce/chunk not computed at compatible time");
if (val.argindex == 0) {
double *vfix = val.val.f->vector_atom;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i] - 1;
if (index < 0) continue;
combine(vchunk[index * nstride], vfix[i]);
}
} else {
double **afix = val.val.f->array_atom;
int argindexm1 = val.argindex - 1;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i] - 1;
if (index < 0) continue;
combine(vchunk[index * nstride], afix[i][argindexm1]);
}
}
// evaluate atom-style variable
} else if (val.which == ArgInfo::VARIABLE) {
if (atom->nmax > maxatom) {
memory->destroy(varatom);
maxatom = atom->nmax;
memory->create(varatom, maxatom, "reduce/chunk:varatom");
}
input->variable->compute_atom(val.val.v, igroup, varatom, 1, 0);
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i] - 1;
if (index < 0) continue;
combine(vchunk[index * nstride], varatom[i]);
}
}
}
/* ----------------------------------------------------------------------
combine two values according to reduction mode
------------------------------------------------------------------------- */
void ComputeReduceChunk::combine(double &one, double two)
{
if (mode == SUM)
one += two;
else if (mode == MINN) {
if (two < one) one = two;
} else if (mode == MAXX) {
if (two > one) one = two;
}
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeReduceChunk::memory_usage()
{
double bytes = (double) maxatom * sizeof(double) + ComputeChunk::memory_usage();
if (values.size() == 1)
bytes += (double) maxchunk * 2 * sizeof(double);
else
bytes += (double) maxchunk * values.size() * 2 * sizeof(double);
return bytes;
}