869 lines
23 KiB
C++
869 lines
23 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "region_cylinder.h"
|
|
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "input.h"
|
|
#include "update.h"
|
|
#include "variable.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
static constexpr double BIG = 1.0e20;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
RegCylinder::RegCylinder(LAMMPS *lmp, int narg, char **arg) :
|
|
Region(lmp, narg, arg), c1str(nullptr), c2str(nullptr), rstr(nullptr)
|
|
{
|
|
c1style = c2style = CONSTANT;
|
|
options(narg - 8, &arg[8]);
|
|
|
|
// check open face settings
|
|
|
|
if (openflag)
|
|
for (int i = 3; i < 6; i++)
|
|
if (open_faces[i]) error->all(FLERR, "Illegal region cylinder open face: {}", i + 1);
|
|
|
|
if (strcmp(arg[2], "x") != 0 && strcmp(arg[2], "y") != 0 && strcmp(arg[2], "z") != 0)
|
|
error->all(FLERR, "Illegal region cylinder axis: {}", arg[2]);
|
|
axis = arg[2][0];
|
|
|
|
if (axis == 'x') {
|
|
if (utils::strmatch(arg[3], "^v_")) {
|
|
c1str = utils::strdup(arg[3] + 2);
|
|
c1 = 0.0;
|
|
c1style = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
c1 = yscale * utils::numeric(FLERR, arg[3], false, lmp);
|
|
c1style = CONSTANT;
|
|
}
|
|
if (utils::strmatch(arg[4], "^v_")) {
|
|
c2str = utils::strdup(arg[4] + 2);
|
|
c2 = 0.0;
|
|
c2style = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
c2 = zscale * utils::numeric(FLERR, arg[4], false, lmp);
|
|
c2style = CONSTANT;
|
|
}
|
|
} else if (axis == 'y') {
|
|
if (utils::strmatch(arg[3], "^v_")) {
|
|
c1str = utils::strdup(arg[3] + 2);
|
|
c1 = 0.0;
|
|
c1style = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
c1 = xscale * utils::numeric(FLERR, arg[3], false, lmp);
|
|
c1style = CONSTANT;
|
|
}
|
|
if (utils::strmatch(arg[4], "^v_")) {
|
|
c2str = utils::strdup(arg[4] + 2);
|
|
c2 = 0.0;
|
|
c2style = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
c2 = zscale * utils::numeric(FLERR, arg[4], false, lmp);
|
|
c2style = CONSTANT;
|
|
}
|
|
} else if (axis == 'z') {
|
|
if (utils::strmatch(arg[3], "^v_")) {
|
|
c1str = utils::strdup(arg[3] + 2);
|
|
c1 = 0.0;
|
|
c1style = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
c1 = xscale * utils::numeric(FLERR, arg[3], false, lmp);
|
|
c1style = CONSTANT;
|
|
}
|
|
if (utils::strmatch(arg[4], "^v_")) {
|
|
c2str = utils::strdup(arg[4] + 2);
|
|
c2 = 0.0;
|
|
c2style = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
c2 = yscale * utils::numeric(FLERR, arg[4], false, lmp);
|
|
c2style = CONSTANT;
|
|
}
|
|
}
|
|
|
|
if (utils::strmatch(arg[5], "^v_")) {
|
|
rstr = utils::strdup(arg[5] + 2);
|
|
radius = 0.0;
|
|
rstyle = VARIABLE;
|
|
varshape = 1;
|
|
} else {
|
|
radius = utils::numeric(FLERR, arg[5], false, lmp);
|
|
if (axis == 'x')
|
|
radius *= yscale;
|
|
else
|
|
radius *= xscale;
|
|
rstyle = CONSTANT;
|
|
}
|
|
|
|
if (varshape) {
|
|
variable_check();
|
|
RegCylinder::shape_update();
|
|
}
|
|
|
|
if (strcmp(arg[6], "INF") == 0 || strcmp(arg[6], "EDGE") == 0) {
|
|
if (domain->box_exist == 0)
|
|
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
|
|
if (axis == 'x') {
|
|
if (strcmp(arg[6], "INF") == 0)
|
|
lo = -BIG;
|
|
else if (domain->triclinic == 0)
|
|
lo = domain->boxlo[0];
|
|
else
|
|
lo = domain->boxlo_bound[0];
|
|
}
|
|
if (axis == 'y') {
|
|
if (strcmp(arg[6], "INF") == 0)
|
|
lo = -BIG;
|
|
else if (domain->triclinic == 0)
|
|
lo = domain->boxlo[1];
|
|
else
|
|
lo = domain->boxlo_bound[1];
|
|
}
|
|
if (axis == 'z') {
|
|
if (strcmp(arg[6], "INF") == 0)
|
|
lo = -BIG;
|
|
else if (domain->triclinic == 0)
|
|
lo = domain->boxlo[2];
|
|
else
|
|
lo = domain->boxlo_bound[2];
|
|
}
|
|
} else {
|
|
if (axis == 'x') lo = xscale * utils::numeric(FLERR, arg[6], false, lmp);
|
|
if (axis == 'y') lo = yscale * utils::numeric(FLERR, arg[6], false, lmp);
|
|
if (axis == 'z') lo = zscale * utils::numeric(FLERR, arg[6], false, lmp);
|
|
}
|
|
|
|
if (strcmp(arg[7], "INF") == 0 || strcmp(arg[7], "EDGE") == 0) {
|
|
if (domain->box_exist == 0)
|
|
error->all(FLERR, "Cannot use region INF or EDGE when box does not exist");
|
|
if (axis == 'x') {
|
|
if (strcmp(arg[7], "INF") == 0)
|
|
hi = BIG;
|
|
else if (domain->triclinic == 0)
|
|
hi = domain->boxhi[0];
|
|
else
|
|
hi = domain->boxhi_bound[0];
|
|
}
|
|
if (axis == 'y') {
|
|
if (strcmp(arg[7], "INF") == 0)
|
|
hi = BIG;
|
|
else if (domain->triclinic == 0)
|
|
hi = domain->boxhi[1];
|
|
else
|
|
hi = domain->boxhi_bound[1];
|
|
}
|
|
if (axis == 'z') {
|
|
if (strcmp(arg[7], "INF") == 0)
|
|
hi = BIG;
|
|
else if (domain->triclinic == 0)
|
|
hi = domain->boxhi[2];
|
|
else
|
|
hi = domain->boxhi_bound[2];
|
|
}
|
|
} else {
|
|
if (axis == 'x') hi = xscale * utils::numeric(FLERR, arg[7], false, lmp);
|
|
if (axis == 'y') hi = yscale * utils::numeric(FLERR, arg[7], false, lmp);
|
|
if (axis == 'z') hi = zscale * utils::numeric(FLERR, arg[7], false, lmp);
|
|
}
|
|
|
|
// error check
|
|
|
|
if (radius <= 0.0) error->all(FLERR, "Illegal radius {} in region cylinder command", radius);
|
|
|
|
// extent of cylinder
|
|
// for variable radius, uses initial radius
|
|
|
|
if (interior) {
|
|
bboxflag = 1;
|
|
if (axis == 'x') {
|
|
extent_xlo = lo;
|
|
extent_xhi = hi;
|
|
extent_ylo = c1 - radius;
|
|
extent_yhi = c1 + radius;
|
|
extent_zlo = c2 - radius;
|
|
extent_zhi = c2 + radius;
|
|
}
|
|
if (axis == 'y') {
|
|
extent_xlo = c1 - radius;
|
|
extent_xhi = c1 + radius;
|
|
extent_ylo = lo;
|
|
extent_yhi = hi;
|
|
extent_zlo = c2 - radius;
|
|
extent_zhi = c2 + radius;
|
|
}
|
|
if (axis == 'z') {
|
|
extent_xlo = c1 - radius;
|
|
extent_xhi = c1 + radius;
|
|
extent_ylo = c2 - radius;
|
|
extent_yhi = c2 + radius;
|
|
extent_zlo = lo;
|
|
extent_zhi = hi;
|
|
}
|
|
} else
|
|
bboxflag = 0;
|
|
|
|
// particle could be close to cylinder surface and 2 ends
|
|
// particle can only touch surface and 1 end
|
|
|
|
cmax = 3;
|
|
contact = new Contact[cmax];
|
|
if (interior)
|
|
tmax = 2;
|
|
else
|
|
tmax = 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
RegCylinder::~RegCylinder()
|
|
{
|
|
delete[] c1str;
|
|
delete[] c2str;
|
|
delete[] rstr;
|
|
delete[] contact;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void RegCylinder::init()
|
|
{
|
|
Region::init();
|
|
if (varshape) variable_check();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
inside = 1 if x,y,z is inside or on surface
|
|
inside = 0 if x,y,z is outside and not on surface
|
|
------------------------------------------------------------------------- */
|
|
|
|
int RegCylinder::inside(double x, double y, double z)
|
|
{
|
|
double del1, del2, dist;
|
|
int inside;
|
|
|
|
if (axis == 'x') {
|
|
del1 = y - c1;
|
|
del2 = z - c2;
|
|
dist = sqrt(del1 * del1 + del2 * del2);
|
|
if (dist <= radius && x >= lo && x <= hi)
|
|
inside = 1;
|
|
else
|
|
inside = 0;
|
|
} else if (axis == 'y') {
|
|
del1 = x - c1;
|
|
del2 = z - c2;
|
|
dist = sqrt(del1 * del1 + del2 * del2);
|
|
if (dist <= radius && y >= lo && y <= hi)
|
|
inside = 1;
|
|
else
|
|
inside = 0;
|
|
} else {
|
|
del1 = x - c1;
|
|
del2 = y - c2;
|
|
dist = sqrt(del1 * del1 + del2 * del2);
|
|
if (dist <= radius && z >= lo && z <= hi)
|
|
inside = 1;
|
|
else
|
|
inside = 0;
|
|
}
|
|
|
|
return inside;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
contact if 0 <= x < cutoff from one or more inner surfaces of cylinder
|
|
can be one contact for each of 3 cylinder surfaces
|
|
no contact if outside (possible if called from union/intersect)
|
|
delxyz = vector from nearest point on cylinder to x
|
|
special case: no contact with curved surf if x is on center axis
|
|
------------------------------------------------------------------------- */
|
|
|
|
int RegCylinder::surface_interior(double *x, double cutoff)
|
|
{
|
|
double del1, del2, r, delta;
|
|
|
|
int n = 0;
|
|
|
|
if (axis == 'x') {
|
|
del1 = x[1] - c1;
|
|
del2 = x[2] - c2;
|
|
r = sqrt(del1 * del1 + del2 * del2);
|
|
|
|
// x is exterior to cylinder
|
|
|
|
if (r > radius || x[0] < lo || x[0] > hi) return 0;
|
|
|
|
// x is interior to cylinder or on its surface
|
|
|
|
delta = radius - r;
|
|
if (delta < cutoff && r > 0.0 && !open_faces[2]) {
|
|
contact[n].r = delta;
|
|
contact[n].delx = 0.0;
|
|
contact[n].dely = del1 * (1.0 - radius / r);
|
|
contact[n].delz = del2 * (1.0 - radius / r);
|
|
contact[n].radius = -2.0 * radius;
|
|
contact[n].iwall = 2;
|
|
contact[n].varflag = 1;
|
|
n++;
|
|
}
|
|
delta = x[0] - lo;
|
|
if (delta < cutoff && !open_faces[0]) {
|
|
contact[n].r = delta;
|
|
contact[n].delx = delta;
|
|
contact[n].dely = contact[n].delz = 0.0;
|
|
contact[n].radius = 0;
|
|
contact[n].iwall = 0;
|
|
contact[n].varflag = 0;
|
|
n++;
|
|
}
|
|
delta = hi - x[0];
|
|
if (delta < cutoff && !open_faces[1]) {
|
|
contact[n].r = delta;
|
|
contact[n].delx = -delta;
|
|
contact[n].dely = contact[n].delz = 0.0;
|
|
contact[n].radius = 0;
|
|
contact[n].iwall = 1;
|
|
contact[n].varflag = 0;
|
|
n++;
|
|
}
|
|
|
|
} else if (axis == 'y') {
|
|
del1 = x[0] - c1;
|
|
del2 = x[2] - c2;
|
|
r = sqrt(del1 * del1 + del2 * del2);
|
|
|
|
// y is exterior to cylinder
|
|
|
|
if (r > radius || x[1] < lo || x[1] > hi) return 0;
|
|
|
|
// y is interior to cylinder or on its surface
|
|
|
|
delta = radius - r;
|
|
if (delta < cutoff && r > 0.0 && !open_faces[2]) {
|
|
contact[n].r = delta;
|
|
contact[n].delx = del1 * (1.0 - radius / r);
|
|
contact[n].dely = 0.0;
|
|
contact[n].delz = del2 * (1.0 - radius / r);
|
|
contact[n].radius = -2.0 * radius;
|
|
contact[n].iwall = 2;
|
|
contact[n].varflag = 1;
|
|
n++;
|
|
}
|
|
delta = x[1] - lo;
|
|
if (delta < cutoff && !open_faces[0]) {
|
|
contact[n].r = delta;
|
|
contact[n].dely = delta;
|
|
contact[n].delx = contact[n].delz = 0.0;
|
|
contact[n].radius = 0;
|
|
contact[n].iwall = 0;
|
|
contact[n].varflag = 0;
|
|
n++;
|
|
}
|
|
delta = hi - x[1];
|
|
if (delta < cutoff && !open_faces[1]) {
|
|
contact[n].r = delta;
|
|
contact[n].dely = -delta;
|
|
contact[n].delx = contact[n].delz = 0.0;
|
|
contact[n].radius = 0;
|
|
contact[n].iwall = 1;
|
|
contact[n].varflag = 0;
|
|
n++;
|
|
}
|
|
|
|
} else {
|
|
del1 = x[0] - c1;
|
|
del2 = x[1] - c2;
|
|
r = sqrt(del1 * del1 + del2 * del2);
|
|
|
|
// z is exterior to cylinder
|
|
|
|
if (r > radius || x[2] < lo || x[2] > hi) return 0;
|
|
|
|
// z is interior to cylinder or on its surface
|
|
|
|
delta = radius - r;
|
|
if (delta < cutoff && r > 0.0 && !open_faces[2]) {
|
|
contact[n].r = delta;
|
|
contact[n].delx = del1 * (1.0 - radius / r);
|
|
contact[n].dely = del2 * (1.0 - radius / r);
|
|
contact[n].delz = 0.0;
|
|
contact[n].radius = -2.0 * radius;
|
|
contact[n].iwall = 2;
|
|
contact[n].varflag = 1;
|
|
n++;
|
|
}
|
|
delta = x[2] - lo;
|
|
if (delta < cutoff && !open_faces[0]) {
|
|
contact[n].r = delta;
|
|
contact[n].delz = delta;
|
|
contact[n].delx = contact[n].dely = 0.0;
|
|
contact[n].radius = 0;
|
|
contact[n].iwall = 0;
|
|
contact[n].varflag = 0;
|
|
n++;
|
|
}
|
|
delta = hi - x[2];
|
|
if (delta < cutoff && !open_faces[1]) {
|
|
contact[n].r = delta;
|
|
contact[n].delz = -delta;
|
|
contact[n].delx = contact[n].dely = 0.0;
|
|
contact[n].radius = 0;
|
|
contact[n].iwall = 1;
|
|
contact[n].varflag = 0;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
one contact if 0 <= x < cutoff from outer surface of cylinder
|
|
no contact if inside (possible if called from union/intersect)
|
|
delxyz = vector from nearest point on cylinder to x
|
|
------------------------------------------------------------------------- */
|
|
|
|
int RegCylinder::surface_exterior(double *x, double cutoff)
|
|
{
|
|
double del1, del2, r;
|
|
double xp, yp, zp;
|
|
double dx, dr, dr2, d2, d2prev;
|
|
|
|
// radius of curvature for granular
|
|
// 0 for flat surfaces (infinite case), 2*radius for curved portion
|
|
|
|
double crad = 0.0;
|
|
int varflag = 0;
|
|
|
|
if (axis == 'x') {
|
|
del1 = x[1] - c1;
|
|
del2 = x[2] - c2;
|
|
r = sqrt(del1 * del1 + del2 * del2);
|
|
|
|
// x is far enough from cylinder that there is no contact
|
|
// x is interior to cylinder
|
|
|
|
if (r >= radius + cutoff || x[0] <= lo - cutoff || x[0] >= hi + cutoff) return 0;
|
|
if (r < radius && x[0] > lo && x[0] < hi) return 0;
|
|
|
|
// x is exterior to cylinder or on its surface
|
|
// xp,yp,zp = point on surface of cylinder that x is closest to
|
|
// could be edge of cylinder
|
|
// do not add contact point if r >= cutoff
|
|
|
|
d2prev = BIG;
|
|
if (!openflag) {
|
|
if (r > radius) {
|
|
yp = c1 + del1 * radius / r;
|
|
zp = c2 + del2 * radius / r;
|
|
crad = 2.0 * radius;
|
|
varflag = 1;
|
|
} else {
|
|
yp = x[1];
|
|
zp = x[2];
|
|
}
|
|
if (x[0] < lo)
|
|
xp = lo;
|
|
else if (x[0] > hi)
|
|
xp = hi;
|
|
else
|
|
xp = x[0];
|
|
|
|
} else {
|
|
|
|
// closest point on curved surface
|
|
|
|
dr = r - radius;
|
|
dr2 = dr * dr;
|
|
if (!open_faces[2]) {
|
|
yp = c1 + del1 * radius / r;
|
|
zp = c2 + del2 * radius / r;
|
|
if (x[0] < lo) {
|
|
dx = lo - x[0];
|
|
xp = lo;
|
|
} else if (x[0] > hi) {
|
|
dx = x[0] - hi;
|
|
xp = hi;
|
|
} else {
|
|
dx = 0;
|
|
xp = x[0];
|
|
}
|
|
d2 = d2prev = dr2 + dx * dx;
|
|
}
|
|
|
|
// closest point on bottom cap
|
|
|
|
if (!open_faces[0]) {
|
|
dx = lo - x[0];
|
|
if (r < radius)
|
|
d2 = dx * dx;
|
|
else
|
|
d2 = dr2 + dx * dx;
|
|
if (d2 < d2prev) {
|
|
xp = lo;
|
|
if (r < radius) {
|
|
yp = x[1];
|
|
zp = x[2];
|
|
}
|
|
d2prev = d2;
|
|
}
|
|
}
|
|
|
|
// closest point on top cap
|
|
|
|
if (!open_faces[1]) {
|
|
dx = hi - x[0];
|
|
if (r < radius)
|
|
d2 = dx * dx;
|
|
else
|
|
d2 = dr2 + dx * dx;
|
|
if (d2 < d2prev) {
|
|
xp = hi;
|
|
if (r < radius) {
|
|
yp = x[1];
|
|
zp = x[2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
add_contact(0, x, xp, yp, zp);
|
|
contact[0].radius = crad;
|
|
contact[0].varflag = varflag;
|
|
contact[0].iwall = 0;
|
|
if (contact[0].r < cutoff) return 1;
|
|
return 0;
|
|
|
|
} else if (axis == 'y') {
|
|
del1 = x[0] - c1;
|
|
del2 = x[2] - c2;
|
|
r = sqrt(del1 * del1 + del2 * del2);
|
|
|
|
// y is far enough from cylinder that there is no contact
|
|
// y is interior to cylinder
|
|
|
|
if (r >= radius + cutoff || x[1] <= lo - cutoff || x[1] >= hi + cutoff) return 0;
|
|
if (r < radius && x[1] > lo && x[1] < hi) return 0;
|
|
|
|
// y is exterior to cylinder or on its surface
|
|
// xp,yp,zp = point on surface of cylinder that x is closest to
|
|
// could be edge of cylinder
|
|
// do not add contact point if r >= cutoff
|
|
|
|
d2prev = BIG;
|
|
if (!openflag) {
|
|
if (r > radius) {
|
|
xp = c1 + del1 * radius / r;
|
|
zp = c2 + del2 * radius / r;
|
|
crad = 2.0 * radius;
|
|
varflag = 1;
|
|
} else {
|
|
xp = x[0];
|
|
zp = x[2];
|
|
}
|
|
if (x[1] < lo)
|
|
yp = lo;
|
|
else if (x[1] > hi)
|
|
yp = hi;
|
|
else
|
|
yp = x[1];
|
|
|
|
} else {
|
|
|
|
// closest point on curved surface
|
|
|
|
dr = r - radius;
|
|
dr2 = dr * dr;
|
|
if (!open_faces[2]) {
|
|
xp = c1 + del1 * radius / r;
|
|
zp = c2 + del2 * radius / r;
|
|
if (x[1] < lo) {
|
|
dx = lo - x[1];
|
|
yp = lo;
|
|
} else if (x[1] > hi) {
|
|
dx = x[1] - hi;
|
|
yp = hi;
|
|
} else {
|
|
dx = 0;
|
|
yp = x[1];
|
|
}
|
|
d2 = d2prev = dr2 + dx * dx;
|
|
}
|
|
|
|
// closest point on bottom cap
|
|
|
|
if (!open_faces[0]) {
|
|
dx = lo - x[1];
|
|
if (r < radius)
|
|
d2 = dx * dx;
|
|
else
|
|
d2 = dr2 + dx * dx;
|
|
if (d2 < d2prev) {
|
|
yp = lo;
|
|
if (r < radius) {
|
|
xp = x[0];
|
|
zp = x[2];
|
|
}
|
|
d2prev = d2;
|
|
}
|
|
}
|
|
|
|
// closest point on top cap
|
|
|
|
if (!open_faces[1]) {
|
|
dx = hi - x[1];
|
|
if (r < radius)
|
|
d2 = dx * dx;
|
|
else
|
|
d2 = dr2 + dx * dx;
|
|
if (d2 < d2prev) {
|
|
yp = hi;
|
|
if (r < radius) {
|
|
xp = x[0];
|
|
zp = x[2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
add_contact(0, x, xp, yp, zp);
|
|
contact[0].radius = crad;
|
|
contact[0].varflag = varflag;
|
|
contact[0].iwall = 0;
|
|
if (contact[0].r < cutoff) return 1;
|
|
return 0;
|
|
|
|
} else {
|
|
del1 = x[0] - c1;
|
|
del2 = x[1] - c2;
|
|
r = sqrt(del1 * del1 + del2 * del2);
|
|
|
|
// z is far enough from cylinder that there is no contact
|
|
// z is interior to cylinder
|
|
|
|
if (r >= radius + cutoff || x[2] <= lo - cutoff || x[2] >= hi + cutoff) return 0;
|
|
if (r < radius && x[2] > lo && x[2] < hi) return 0;
|
|
|
|
// z is exterior to cylinder or on its surface
|
|
// xp,yp,zp = point on surface of cylinder that x is closest to
|
|
// could be edge of cylinder
|
|
// do not add contact point if r >= cutoff
|
|
|
|
d2prev = BIG;
|
|
if (!openflag) {
|
|
if (r > radius) {
|
|
xp = c1 + del1 * radius / r;
|
|
yp = c2 + del2 * radius / r;
|
|
crad = 2.0 * radius;
|
|
varflag = 1;
|
|
} else {
|
|
xp = x[0];
|
|
yp = x[1];
|
|
}
|
|
if (x[2] < lo)
|
|
zp = lo;
|
|
else if (x[2] > hi)
|
|
zp = hi;
|
|
else
|
|
zp = x[2];
|
|
|
|
} else {
|
|
|
|
// closest point on curved surface
|
|
|
|
dr = r - radius;
|
|
dr2 = dr * dr;
|
|
if (!open_faces[2]) {
|
|
xp = c1 + del1 * radius / r;
|
|
yp = c2 + del2 * radius / r;
|
|
if (x[2] < lo) {
|
|
dx = lo - x[2];
|
|
zp = lo;
|
|
} else if (x[2] > hi) {
|
|
dx = x[2] - hi;
|
|
zp = hi;
|
|
} else {
|
|
dx = 0;
|
|
zp = x[2];
|
|
}
|
|
d2prev = dr2 + dx * dx;
|
|
}
|
|
|
|
// closest point on bottom cap
|
|
|
|
if (!open_faces[0]) {
|
|
dx = lo - x[2];
|
|
if (r < radius)
|
|
d2 = dx * dx;
|
|
else
|
|
d2 = dr2 + dx * dx;
|
|
if (d2 < d2prev) {
|
|
zp = lo;
|
|
if (r < radius) {
|
|
xp = x[0];
|
|
yp = x[1];
|
|
}
|
|
d2prev = d2;
|
|
}
|
|
}
|
|
|
|
// closest point on top cap
|
|
|
|
if (!open_faces[1]) {
|
|
dx = hi - x[2];
|
|
if (r < radius)
|
|
d2 = dx * dx;
|
|
else
|
|
d2 = dr2 + dx * dx;
|
|
if (d2 < d2prev) {
|
|
zp = hi;
|
|
if (r < radius) {
|
|
xp = x[0];
|
|
yp = x[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
add_contact(0, x, xp, yp, zp);
|
|
contact[0].radius = crad;
|
|
contact[0].varflag = varflag;
|
|
contact[0].iwall = 0;
|
|
if (contact[0].r < cutoff) return 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
change region shape via variable evaluation
|
|
------------------------------------------------------------------------- */
|
|
|
|
void RegCylinder::shape_update()
|
|
{
|
|
if (c1style == VARIABLE) c1 = input->variable->compute_equal(c1var);
|
|
if (c2style == VARIABLE) c2 = input->variable->compute_equal(c2var);
|
|
if (rstyle == VARIABLE) {
|
|
radius = input->variable->compute_equal(rvar);
|
|
if (radius < 0.0) error->one(FLERR, "Variable evaluation in region gave bad value");
|
|
}
|
|
|
|
if (axis == 'x') {
|
|
if (c1style == VARIABLE) c1 *= yscale;
|
|
if (c2style == VARIABLE) c2 *= zscale;
|
|
if (rstyle == VARIABLE) radius *= yscale;
|
|
} else if (axis == 'y') {
|
|
if (c1style == VARIABLE) c1 *= xscale;
|
|
if (c2style == VARIABLE) c2 *= zscale;
|
|
if (rstyle == VARIABLE) radius *= xscale;
|
|
} else { // axis == 'z'
|
|
if (c1style == VARIABLE) c1 *= xscale;
|
|
if (c2style == VARIABLE) c2 *= yscale;
|
|
if (rstyle == VARIABLE) radius *= xscale;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
error check on existence of variable
|
|
------------------------------------------------------------------------- */
|
|
|
|
void RegCylinder::variable_check()
|
|
{
|
|
if (c1style == VARIABLE) {
|
|
c1var = input->variable->find(c1str);
|
|
if (c1var < 0) error->all(FLERR, "Variable {} for region cylinder does not exist", c1str);
|
|
if (!input->variable->equalstyle(c1var))
|
|
error->all(FLERR, "Variable {} for region cylinder is invalid style", c1str);
|
|
}
|
|
|
|
if (c2style == VARIABLE) {
|
|
c2var = input->variable->find(c2str);
|
|
if (c2var < 0) error->all(FLERR, "Variable {} for region cylinder does not exist", c2str);
|
|
if (!input->variable->equalstyle(c2var))
|
|
error->all(FLERR, "Variable {} for region cylinder is invalid style", c2str);
|
|
}
|
|
|
|
if (rstyle == VARIABLE) {
|
|
rvar = input->variable->find(rstr);
|
|
if (rvar < 0) error->all(FLERR, "Variable {} for region cylinder does not exist", rstr);
|
|
if (!input->variable->equalstyle(rvar))
|
|
error->all(FLERR, "Variable {} for region cylinder is invalid style", rstr);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Set values needed to calculate velocity due to shape changes.
|
|
These values do not depend on the contact, so this function is
|
|
called once per timestep by fix/wall/gran/region.
|
|
|
|
------------------------------------------------------------------------- */
|
|
|
|
void RegCylinder::set_velocity_shape()
|
|
{
|
|
if (axis == 'x') {
|
|
xcenter[0] = 0;
|
|
xcenter[1] = c1;
|
|
xcenter[2] = c2;
|
|
} else if (axis == 'y') {
|
|
xcenter[0] = c1;
|
|
xcenter[1] = 0;
|
|
xcenter[2] = c2;
|
|
} else {
|
|
xcenter[0] = c1;
|
|
xcenter[1] = c2;
|
|
xcenter[2] = 0;
|
|
}
|
|
forward_transform(xcenter[0], xcenter[1], xcenter[2]);
|
|
if (update->ntimestep > 0)
|
|
rprev = prev[4];
|
|
else
|
|
rprev = radius;
|
|
prev[4] = radius;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
add velocity due to shape change to wall velocity
|
|
------------------------------------------------------------------------- */
|
|
|
|
void RegCylinder::velocity_contact_shape(double *vwall, double *xc)
|
|
{
|
|
double delx, dely, delz; // Displacement of contact point in x,y,z
|
|
if (axis == 'x') {
|
|
delx = 0;
|
|
dely = (xc[1] - xcenter[1]) * (1 - rprev / radius);
|
|
delz = (xc[2] - xcenter[2]) * (1 - rprev / radius);
|
|
} else if (axis == 'y') {
|
|
delx = (xc[0] - xcenter[0]) * (1 - rprev / radius);
|
|
dely = 0;
|
|
delz = (xc[2] - xcenter[2]) * (1 - rprev / radius);
|
|
} else {
|
|
delx = (xc[0] - xcenter[0]) * (1 - rprev / radius);
|
|
dely = (xc[1] - xcenter[1]) * (1 - rprev / radius);
|
|
delz = 0;
|
|
}
|
|
vwall[0] += delx / update->dt;
|
|
vwall[1] += dely / update->dt;
|
|
vwall[2] += delz / update->dt;
|
|
}
|