Files
lammps/doc/html/Howto_bioFF.html
2025-01-13 14:55:48 +00:00

412 lines
30 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>8.4.1. CHARMM, AMBER, COMPASS, DREIDING, and OPLS force fields &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinx-design.min.css" type="text/css" />
<link rel="stylesheet" href="_static/css/lammps.css" type="text/css" />
<link rel="shortcut icon" href="_static/lammps.ico"/>
<link rel="canonical" href="https://docs.lammps.org/Howto_bioFF.html" />
<!--[if lt IE 9]>
<script src="_static/js/html5shiv.min.js"></script>
<![endif]-->
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=5929fcd5"></script>
<script src="_static/doctools.js?v=9bcbadda"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/design-tabs.js?v=f930bc37"></script>
<script async="async" src="_static/mathjax/es5/tex-mml-chtml.js?v=cadf963e"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="8.4.2. AMOEBA and HIPPO force fields" href="Howto_amoeba.html" />
<link rel="prev" title="8.3.9. Output structured data from LAMMPS" href="Howto_structured_data.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="Manual.html">
<img src="_static/lammps-logo.png" class="logo" alt="Logo"/>
</a>
<div class="lammps_version">Version: <b>19 Nov 2024</b></div>
<div class="lammps_release">git info: </div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">User Guide</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Install.html">2. Install LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Build.html">3. Build LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Run_head.html">4. Run LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Commands.html">5. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Packages.html">6. Optional packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Speed.html">7. Accelerate performance</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="Howto.html">8. Howto discussions</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="Howto.html#general-howto">8.1. General howto</a></li>
<li class="toctree-l2"><a class="reference internal" href="Howto.html#settings-howto">8.2. Settings howto</a></li>
<li class="toctree-l2"><a class="reference internal" href="Howto.html#analysis-howto">8.3. Analysis howto</a></li>
<li class="toctree-l2 current"><a class="reference internal" href="Howto.html#force-fields-howto">8.4. Force fields howto</a><ul class="current">
<li class="toctree-l3 current"><a class="current reference internal" href="#">8.4.1. CHARMM, AMBER, COMPASS, DREIDING, and OPLS force fields</a></li>
<li class="toctree-l3"><a class="reference internal" href="Howto_amoeba.html">8.4.2. AMOEBA and HIPPO force fields</a></li>
<li class="toctree-l3"><a class="reference internal" href="Howto_tip3p.html">8.4.3. TIP3P water model</a></li>
<li class="toctree-l3"><a class="reference internal" href="Howto_tip4p.html">8.4.4. TIP4P water model</a></li>
<li class="toctree-l3"><a class="reference internal" href="Howto_tip5p.html">8.4.5. TIP5P water model</a></li>
<li class="toctree-l3"><a class="reference internal" href="Howto_spc.html">8.4.6. SPC water model</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="Howto.html#packages-howto">8.5. Packages howto</a></li>
<li class="toctree-l2"><a class="reference internal" href="Howto.html#tutorials-howto">8.6. Tutorials howto</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Examples.html">9. Example scripts</a></li>
<li class="toctree-l1"><a class="reference internal" href="Tools.html">10. Auxiliary tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Errors.html">11. Errors</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Programmer Guide</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="Library.html">1. LAMMPS Library Interfaces</a></li>
<li class="toctree-l1"><a class="reference internal" href="Python_head.html">2. Use Python with LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Modify.html">3. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Developer.html">4. Information for Developers</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Command Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="commands_list.html">Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="fixes.html">Fix Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="computes.html">Compute Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="pairs.html">Pair Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="bonds.html">Bond Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="angles.html">Angle Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="dihedrals.html">Dihedral Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="impropers.html">Improper Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="dumps.html">Dump Styles</a></li>
<li class="toctree-l1"><a class="reference internal" href="fix_modify_atc_commands.html">fix_modify AtC commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Bibliography.html">Bibliography</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content style-external-links">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item"><a href="Howto.html"><span class="section-number">8. </span>Howto discussions</a></li>
<li class="breadcrumb-item active"><span class="section-number">8.4.1. </span>CHARMM, AMBER, COMPASS, DREIDING, and OPLS force fields</li>
<li class="wy-breadcrumbs-aside">
<a href="https://www.lammps.org"><img src="_static/lammps-logo.png" width="64" height="16" alt="LAMMPS Homepage"></a> | <a href="Commands_all.html">Commands</a>
</li>
</ul><div class="rst-breadcrumbs-buttons" role="navigation" aria-label="Sequential page navigation">
<a href="Howto_structured_data.html" class="btn btn-neutral float-left" title="8.3.9. Output structured data from LAMMPS" accesskey="p"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="Howto_amoeba.html" class="btn btn-neutral float-right" title="8.4.2. AMOEBA and HIPPO force fields" accesskey="n">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<p><span class="math notranslate nohighlight">\(\renewcommand{\AA}{\text{Å}}\)</span></p>
<section id="charmm-amber-compass-dreiding-and-opls-force-fields">
<h1><span class="section-number">8.4.1. </span>CHARMM, AMBER, COMPASS, DREIDING, and OPLS force fields<a class="headerlink" href="#charmm-amber-compass-dreiding-and-opls-force-fields" title="Link to this heading"></a></h1>
<p>A compact summary of the concepts, definitions, and properties of
force fields with explicit bonded interactions (like the ones discussed
in this HowTo) is given in <a class="reference internal" href="#typelabel2"><span class="std std-ref">(Gissinger)</span></a>.</p>
<p>A force field has 2 parts: the formulas that define it and the
coefficients used for a particular system. Here we only discuss
formulas implemented in LAMMPS that correspond to formulas commonly used
in the CHARMM, AMBER, COMPASS, and DREIDING force fields. Setting
coefficients is done either from special sections in an input data file
via the <a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a> command or in the input script with
commands like <a class="reference internal" href="pair_coeff.html"><span class="doc">pair_coeff</span></a> or <a class="reference internal" href="bond_coeff.html"><span class="doc">bond_coeff</span></a> and so on. See the <a class="reference internal" href="Tools.html"><span class="doc">Tools</span></a> doc page for
additional tools that can use CHARMM, AMBER, or Materials Studio
generated files to assign force field coefficients and convert their
output into LAMMPS input. LAMMPS input scripts can also be generated by
<a class="reference external" href="https://charmm-gui.org/">charmm-gui.org</a>.</p>
<section id="charmm-and-amber">
<h2>CHARMM and AMBER<a class="headerlink" href="#charmm-and-amber" title="Link to this heading"></a></h2>
<p>The <a class="reference external" href="https://mackerell.umaryland.edu/charmm_ff.shtml">CHARMM force field</a> <a class="reference internal" href="#howto-mackerell"><span class="std std-ref">(MacKerell)</span></a> and <a class="reference external" href="https://ambermd.org/AmberModels.php">AMBER force field</a> <a class="reference internal" href="#howto-cornell"><span class="std std-ref">(Cornell)</span></a>
have potential energy function of the form</p>
<div class="math notranslate nohighlight">
\[\begin{split}V &amp; = \sum_{bonds} E_b + \sum_{angles} \!E_a + \!\overbrace{\sum_{dihedral} \!\!E_d}^{\substack{
\text{charmm} \\
\text{charmmfsw}
}} +\!\!\! \sum_{impropers} \!\!\!E_i \\[.6em]
&amp; \quad + \!\!\!\!\!\!\!\!\!\!\underbrace{~\sum_{pairs} \left(E_{LJ}+E_{coul}\right)}_{\substack{
\text{lj/charmm/coul/charmm} \\
\text{lj/charmm/coul/charmm/implicit} \\
\text{lj/charmm/coul/long} \\
\text{lj/charmm/coul/msm} \\
\text{lj/charmmfsw/coul/charmmfsh} \\
\text{lj/charmmfsw/coul/long}
}} \!\!\!\!\!\!\!\!+ \!\!\sum_{special}\! E_s + \!\!\!\!\sum_{residues} \!\!\!{\scriptstyle\mathrm{CMAP}(\phi,\psi)}\end{split}\]</div>
<p>The terms are computed by bond styles (relationship between two atoms),
angle styles (between 3 atoms) , dihedral/improper styles (between 4
atoms), pair styles (non-covalently bonded pair interactions) and
special bonds. The CMAP term (see <a class="reference internal" href="fix_cmap.html"><span class="doc">fix cmap</span></a> command for
details) corrects for pairs of dihedral angles (“Correction MAP”) to
significantly improve the structural and dynamic properties of proteins
in crystalline and solution environments <a class="reference internal" href="#howto-brooks"><span class="std std-ref">(Brooks)</span></a>. The AMBER force field does not include the CMAP term.</p>
<p>The interaction styles listed below compute force field formulas that
are consistent with common options in CHARMM or AMBER. See each
commands documentation for the formula it computes.</p>
<ul class="simple">
<li><p><a class="reference internal" href="bond_harmonic.html"><span class="doc">bond_style</span></a> harmonic</p></li>
<li><p><a class="reference internal" href="angle_charmm.html"><span class="doc">angle_style</span></a> charmm</p></li>
<li><p><a class="reference internal" href="dihedral_charmm.html"><span class="doc">dihedral_style</span></a> charmmfsh</p></li>
<li><p><a class="reference internal" href="dihedral_charmm.html"><span class="doc">dihedral_style</span></a> charmm</p></li>
<li><p><a class="reference internal" href="pair_charmm.html"><span class="doc">pair_style</span></a> lj/charmmfsw/coul/charmmfsh</p></li>
<li><p><a class="reference internal" href="pair_charmm.html"><span class="doc">pair_style</span></a> lj/charmmfsw/coul/long</p></li>
<li><p><a class="reference internal" href="pair_charmm.html"><span class="doc">pair_style</span></a> lj/charmm/coul/charmm</p></li>
<li><p><a class="reference internal" href="pair_charmm.html"><span class="doc">pair_style</span></a> lj/charmm/coul/charmm/implicit</p></li>
<li><p><a class="reference internal" href="pair_charmm.html"><span class="doc">pair_style</span></a> lj/charmm/coul/long</p></li>
<li><p><a class="reference internal" href="special_bonds.html"><span class="doc">special_bonds</span></a> charmm</p></li>
<li><p><a class="reference internal" href="special_bonds.html"><span class="doc">special_bonds</span></a> amber</p></li>
</ul>
<p>The pair styles compute Lennard Jones (LJ) and Coulombic interactions
with additional switching or shifting functions that ramp the energy
and/or force smoothly to zero between an inner <span class="math notranslate nohighlight">\((a)\)</span> and outer
<span class="math notranslate nohighlight">\((b)\)</span> cutoff. The older styles with <em>charmm</em> (not <em>charmmfsw</em> or
<em>charmmfsh</em>) in their name compute the LJ and Coulombic interactions
with an energy switching function (esw) <span class="math notranslate nohighlight">\(S(r)\)</span> which ramps the energy
smoothly to zero between the inner and outer cutoff. This can cause
irregularities in pairwise forces (due to the discontinuous second
derivative of energy at the boundaries of the switching region), which
in some cases can result in complications in energy minimization and
detectable artifacts in MD simulations.</p>
<div class="sd-container-fluid sd-sphinx-override sd-mb-4 docutils">
<div class="sd-row sd-row-cols-1 sd-row-cols-xs-1 sd-row-cols-sm-1 sd-row-cols-md-2 sd-row-cols-lg-2 docutils">
<div class="sd-col sd-d-flex-column docutils">
<div class="math notranslate nohighlight">
\[\begin{split}LJ(r) &amp;= 4 \epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} -
\left(\frac{\sigma}{r}\right)^6 \right]\\[.6em]
C(r) &amp;= \frac{C q_i q_j}{ \epsilon r}\\[.6em]
S(r) &amp;= \frac{ \left(b^2 - r^2\right)^2 \left(b^2 + 2r^2 - 3{a^2}\right)}
{ \left(b^2 - a^2\right)^3 }\\[.6em]
E_{LJ}(r) &amp;= \begin{cases}
LJ(r), &amp; r \leq a \\
LJ(r) S(r), &amp; a &lt; r \leq b \\
0, &amp;r &gt; b
\end{cases} \\[.6em]
E_{coul}(r) &amp;= \begin{cases}
C(r), &amp; r \leq a \\
C(r) S(r), &amp; a &lt; r \leq b \\
0, &amp; r &gt; b
\end{cases}\end{split}\]</div>
</div>
<div class="sd-col sd-d-flex-column docutils">
<img alt="_images/howto_charmm_ELJ.png" class="align-center" src="_images/howto_charmm_ELJ.png" />
</div>
</div>
</div>
<p>The newer styles with <em>charmmfsw</em> or <em>charmmfsh</em> in their name replace
energy switching with force switching (fsw) for LJ interactions and
force shifting (fsh) functions for Coulombic interactions
<a class="reference internal" href="#howto-steinbach"><span class="std std-ref">(Steinbach)</span></a></p>
<div class="sd-container-fluid sd-sphinx-override sd-mb-4 docutils">
<div class="sd-row sd-row-cols-1 sd-row-cols-xs-1 sd-row-cols-sm-1 sd-row-cols-md-2 sd-row-cols-lg-2 docutils">
<div class="sd-col sd-d-flex-column docutils">
<div class="math notranslate nohighlight">
\[\begin{split} E_{LJ}(r) = &amp; \begin{cases}
4 \epsilon \sigma^6 \left(\frac{\displaystyle\sigma
^6-r^6}{\displaystyle r^{12}}-\frac{\displaystyle\sigma ^6}{\displaystyle a^6
b^6}+\frac{\displaystyle 1}{\displaystyle a^3 b^3}\right) &amp; r\leq a \\
\frac{\displaystyle 4 \epsilon \sigma^6 \left(\sigma ^6
\left(b^6-r^6\right)^2-b^3 r^6 \left(a^3+b^3\right)
\left(b^3-r^3\right)^2\right)}{\displaystyle b^6 r^{12}
\left(b^6-a^6\right)} &amp; a&lt;r \leq b\\
0, &amp; r&gt;b
\end{cases}\\[.6em]
E_{coul}(r) &amp; = \begin{cases}
C(r) \frac{\displaystyle (b-r)^2}{\displaystyle r b^2}, &amp; r \leq b \\
0, &amp; r &gt; b
\end{cases}\end{split}\]</div>
</div>
<div class="sd-col sd-d-flex-column docutils">
<img alt="_images/howto_charmmfsw_ELJ.png" class="align-center" src="_images/howto_charmmfsw_ELJ.png" />
</div>
</div>
</div>
<p>These styles are used by LAMMPS input scripts generated by
<a class="reference external" href="https://charmm-gui.org/">https://charmm-gui.org/</a> <a class="reference internal" href="#howto-brooks"><span class="std std-ref">(Brooks)</span></a>.</p>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>For CHARMM, newer <em>charmmfsw</em> or <em>charmmfsh</em> styles were released in
March 2017. We recommend they be used instead of the older <em>charmm</em>
styles. See discussion of the differences on the <a class="reference internal" href="pair_charmm.html"><span class="doc">pair charmm</span></a> and <a class="reference internal" href="dihedral_charmm.html"><span class="doc">dihedral charmm</span></a> doc
pages.</p>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>The TIP3P water model is strongly recommended for use with the CHARMM
force field. In fact, <a class="reference external" href="https://matsci.org/t/using-spc-water-with-charmm-ff/24715">“using the SPC model with CHARMM parameters is
a bad idea”</a> and <a class="reference external" href="https://matsci.org/t/hybrid-pair-styles-for-charmm-and-tip4p-ew/32609">“to
enable TIP4P style water in CHARMM, you would have to write a new pair
style”</a>
. LAMMPS input scripts generated by Solution Builder on <a class="reference external" href="https://charmm-gui.org">https://charmm-gui.org</a>
use TIP3P molecules for solvation. Any other water model can and
probably will lead to false conclusions.</p>
</div>
</section>
<section id="compass">
<h2>COMPASS<a class="headerlink" href="#compass" title="Link to this heading"></a></h2>
<p>COMPASS is a general force field for atomistic simulation of common
organic molecules, inorganic small molecules, and polymers which was
developed using ab initio and empirical parameterization techniques
<a class="reference internal" href="#howto-sun"><span class="std std-ref">(Sun)</span></a>. See the <a class="reference internal" href="Tools.html"><span class="doc">Tools</span></a> page for the
msi2lmp tool for creating LAMMPS template input and data files from
BIOVIAs Materials Studio files. Please note that the msi2lmp tool is
very old and largely unmaintained, so it does not support all features
of Materials Studio provided force field files, especially additions
during the last decade. You should watch the output carefully and
compare results, where possible. See <a class="reference internal" href="#howto-sun"><span class="std std-ref">(Sun)</span></a> for a
description of the COMPASS force field.</p>
<p>These interaction styles listed below compute force field formulas that
are consistent with the COMPASS force field. See each commands
documentation for the formula it computes.</p>
<ul class="simple">
<li><p><a class="reference internal" href="bond_class2.html"><span class="doc">bond_style</span></a> class2</p></li>
<li><p><a class="reference internal" href="angle_class2.html"><span class="doc">angle_style</span></a> class2</p></li>
<li><p><a class="reference internal" href="dihedral_class2.html"><span class="doc">dihedral_style</span></a> class2</p></li>
<li><p><a class="reference internal" href="improper_class2.html"><span class="doc">improper_style</span></a> class2</p></li>
<li><p><a class="reference internal" href="pair_class2.html"><span class="doc">pair_style</span></a> lj/class2</p></li>
<li><p><a class="reference internal" href="pair_class2.html"><span class="doc">pair_style</span></a> lj/class2/coul/cut</p></li>
<li><p><a class="reference internal" href="pair_class2.html"><span class="doc">pair_style</span></a> lj/class2/coul/long</p></li>
<li><p><a class="reference internal" href="special_bonds.html"><span class="doc">special_bonds</span></a> lj/coul 0 0 1</p></li>
</ul>
</section>
<section id="dreiding">
<h2>DREIDING<a class="headerlink" href="#dreiding" title="Link to this heading"></a></h2>
<p>DREIDING is a generic force field developed by the <a class="reference external" href="http://www.wag.caltech.edu">Goddard group</a> at Caltech and is useful for predicting
structures and dynamics of organic, biological and main-group inorganic
molecules. The philosophy in DREIDING is to use general force constants
and geometry parameters based on simple hybridization considerations,
rather than individual force constants and geometric parameters that
depend on the particular combinations of atoms involved in the bond,
angle, or torsion terms. DREIDING has an <a class="reference internal" href="pair_hbond_dreiding.html"><span class="doc">explicit hydrogen bond
term</span></a> to describe interactions involving a
hydrogen atom on very electronegative atoms (N, O, F). Unlike CHARMM
or AMBER, the DREIDING force field has not been parameterized for
considering solvents (like water).</p>
<p>See <a class="reference internal" href="#howto-mayo"><span class="std std-ref">(Mayo)</span></a> for a description of the DREIDING force field</p>
<p>The interaction styles listed below compute force field formulas that
are consistent with the DREIDING force field. See each commands
documentation for the formula it computes.</p>
<ul class="simple">
<li><p><a class="reference internal" href="bond_harmonic.html"><span class="doc">bond_style</span></a> harmonic</p></li>
<li><p><a class="reference internal" href="bond_morse.html"><span class="doc">bond_style</span></a> morse</p></li>
<li><p><a class="reference internal" href="angle_cosine_squared.html"><span class="doc">angle_style</span></a> cosine/squared</p></li>
<li><p><a class="reference internal" href="angle_harmonic.html"><span class="doc">angle_style</span></a> harmonic</p></li>
<li><p><a class="reference internal" href="angle_cosine.html"><span class="doc">angle_style</span></a> cosine</p></li>
<li><p><a class="reference internal" href="angle_cosine_periodic.html"><span class="doc">angle_style</span></a> cosine/periodic</p></li>
<li><p><a class="reference internal" href="dihedral_charmm.html"><span class="doc">dihedral_style</span></a> charmm</p></li>
<li><p><a class="reference internal" href="improper_umbrella.html"><span class="doc">improper_style</span></a> umbrella</p></li>
<li><p><a class="reference internal" href="pair_buck.html"><span class="doc">pair_style</span></a> buck</p></li>
<li><p><a class="reference internal" href="pair_buck.html"><span class="doc">pair_style</span></a> buck/coul/cut</p></li>
<li><p><a class="reference internal" href="pair_buck.html"><span class="doc">pair_style</span></a> buck/coul/long</p></li>
<li><p><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style</span></a> lj/cut</p></li>
<li><p><a class="reference internal" href="pair_lj_cut_coul.html"><span class="doc">pair_style</span></a> lj/cut/coul/cut</p></li>
<li><p><a class="reference internal" href="pair_lj_cut_coul.html"><span class="doc">pair_style</span></a> lj/cut/coul/long</p></li>
<li><p><a class="reference internal" href="pair_hbond_dreiding.html"><span class="doc">pair_style</span></a> hbond/dreiding/lj</p></li>
<li><p><a class="reference internal" href="pair_hbond_dreiding.html"><span class="doc">pair_style</span></a> hbond/dreiding/morse</p></li>
<li><p><a class="reference internal" href="special_bonds.html"><span class="doc">special_bonds</span></a> dreiding</p></li>
</ul>
</section>
<section id="opls">
<h2>OPLS<a class="headerlink" href="#opls" title="Link to this heading"></a></h2>
<p>OPLS (Optimized Potentials for Liquid Simulations) is a general force
field for atomistic simulation of organic molecules in solvent. It was
developed by the <a class="reference external" href="https://traken.chem.yale.edu/oplsaam.html">Jorgensen group</a> at Purdue University and
later at Yale University. Multiple versions of the OPLS parameters
exist for united atom representations (OPLS-UA) and for all-atom
representations (OPLS-AA).</p>
<p>This force field is based on atom types mapped to specific functional
groups in organic and biological molecules. Each atom includes a
static, partial atomic charge reflecting the oxidation state of the
element derived from its bonded neighbors <a class="reference internal" href="#howto-jorgensen"><span class="std std-ref">(Jorgensen)</span></a> and computed based on increments determined by the
atom type of the atoms bond to it.</p>
<p>The interaction styles listed below compute force field formulas that
are fully or in part consistent with the OPLS style force fields. See
each commands documentation for the formula it computes. Some are only
compatible with a subset of OPLS interactions.</p>
<ul class="simple">
<li><p><a class="reference internal" href="bond_harmonic.html"><span class="doc">bond_style</span></a> harmonic</p></li>
<li><p><a class="reference internal" href="angle_harmonic.html"><span class="doc">angle_style</span></a> harmonic</p></li>
<li><p><a class="reference internal" href="dihedral_opls.html"><span class="doc">dihedral_style</span></a> opls</p></li>
<li><p><a class="reference internal" href="improper_cvff.html"><span class="doc">improper_style</span></a> cvff</p></li>
<li><p><a class="reference internal" href="improper_fourier.html"><span class="doc">improper_style</span></a> fourier</p></li>
<li><p><a class="reference internal" href="improper_harmonic.html"><span class="doc">improper_style</span></a> harmonic</p></li>
<li><p><a class="reference internal" href="pair_lj_cut_coul.html"><span class="doc">pair_style</span></a> lj/cut/coul/cut</p></li>
<li><p><a class="reference internal" href="pair_lj_cut_coul.html"><span class="doc">pair_style</span></a> lj/cut/coul/long</p></li>
<li><p><a class="reference internal" href="pair_modify.html"><span class="doc">pair_modify</span></a> geometric</p></li>
<li><p><a class="reference internal" href="special_bonds.html"><span class="doc">special_bonds</span></a> lj/coul 0.0 0.0 0.5</p></li>
</ul>
<hr class="docutils" />
<p id="typelabel2"><strong>(Gissinger)</strong> J. R. Gissinger, I. Nikiforov, Y. Afshar, B. Waters, M. Choi, D. S. Karls, A. Stukowski, W. Im, H. Heinz, A. Kohlmeyer, and E. B. Tadmor, J Phys Chem B, 128, 3282-3297 (2024).</p>
<p id="howto-mackerell"><strong>(MacKerell)</strong> MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al (1998). J Phys Chem, 102, 3586 . <a class="reference external" href="https://doi.org/10.1021/jp973084f">https://doi.org/10.1021/jp973084f</a></p>
<p id="howto-cornell"><strong>(Cornell)</strong> Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman (1995). JACS 117, 5179-5197. <a class="reference external" href="https://doi.org/10.1021/ja00124a002">https://doi.org/10.1021/ja00124a002</a></p>
<p id="howto-steinbach"><strong>(Steinbach)</strong> Steinbach, Brooks (1994). J Comput Chem, 15, 667. <a class="reference external" href="https://doi.org/10.1002/jcc.540150702">https://doi.org/10.1002/jcc.540150702</a></p>
<p id="howto-brooks"><strong>(Brooks)</strong> Brooks, et al (2009). J Comput Chem, 30, 1545. <a class="reference external" href="https://onlinelibrary.wiley.com/doi/10.1002/jcc.21287">https://onlinelibrary.wiley.com/doi/10.1002/jcc.21287</a></p>
<p id="howto-sun"><strong>(Sun)</strong> Sun (1998). J. Phys. Chem. B, 102, 7338-7364. <a class="reference external" href="https://doi.org/10.1021/jp980939v">https://doi.org/10.1021/jp980939v</a></p>
<p id="howto-mayo"><strong>(Mayo)</strong> Mayo, Olfason, Goddard III (1990). J Phys Chem, 94, 8897-8909. <a class="reference external" href="https://doi.org/10.1021/j100389a010">https://doi.org/10.1021/j100389a010</a></p>
<p id="howto-jorgensen"><strong>(Jorgensen)</strong> Jorgensen, Tirado-Rives (1988). J Am Chem Soc, 110, 1657-1666. <a class="reference external" href="https://doi.org/10.1021/ja00214a001">https://doi.org/10.1021/ja00214a001</a></p>
</section>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="Howto_structured_data.html" class="btn btn-neutral float-left" title="8.3.9. Output structured data from LAMMPS" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="Howto_amoeba.html" class="btn btn-neutral float-right" title="8.4.2. AMOEBA and HIPPO force fields" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2003-2025 Sandia Corporation.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(false);
});
</script>
</body>
</html>