Files
lammps/lib/kokkos/core/unit_test/TestTaskScheduler.hpp
2020-12-22 08:52:37 -07:00

902 lines
29 KiB
C++

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 3.0
// Copyright (2020) National Technology & Engineering
// Solutions of Sandia, LLC (NTESS).
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY NTESS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NTESS OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Christian R. Trott (crtrott@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP
#define KOKKOS_UNITTEST_TASKSCHEDULER_HPP
#include <Kokkos_Macros.hpp>
#if defined(KOKKOS_ENABLE_TASKDAG)
#include <Kokkos_Core.hpp>
#include <impl/Kokkos_FixedBufferMemoryPool.hpp>
#include <cstdio>
#include <iostream>
#include <cmath>
//==============================================================================
// <editor-fold desc="TestFib"> {{{1
namespace TestTaskScheduler {
namespace {
inline long eval_fib(long n) {
constexpr long mask = 0x03;
long fib[4] = {0, 1, 1, 2};
for (long i = 2; i <= n; ++i) {
fib[i & mask] = fib[(i - 1) & mask] + fib[(i - 2) & mask];
}
return fib[n & mask];
}
} // namespace
template <typename Scheduler>
struct TestFib {
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<long, Scheduler>;
using value_type = long;
future_type fib_m1;
future_type fib_m2;
const value_type n;
KOKKOS_INLINE_FUNCTION
TestFib(const value_type arg_n) : fib_m1(), fib_m2(), n(arg_n) {}
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member,
value_type& result) {
#if 0
printf( "\nTestFib(%ld) %d %d\n", n, int( !fib_m1.is_null() ), int( !fib_m2.is_null() ) );
#endif
auto& sched = member.scheduler();
if (n < 2) {
result = n;
} else if (!fib_m2.is_null() && !fib_m1.is_null()) {
result = fib_m1.get() + fib_m2.get();
} else {
// Spawn new children and respawn myself to sum their results.
// Spawn lower value at higher priority as it has a shorter
// path to completion.
fib_m2 = Kokkos::task_spawn(
Kokkos::TaskSingle(sched, Kokkos::TaskPriority::High),
TestFib(n - 2));
fib_m1 = Kokkos::task_spawn(Kokkos::TaskSingle(sched), TestFib(n - 1));
Kokkos::BasicFuture<void, Scheduler> dep[] = {fib_m1, fib_m2};
Kokkos::BasicFuture<void, Scheduler> fib_all = sched.when_all(dep, 2);
if (!fib_m2.is_null() && !fib_m1.is_null() && !fib_all.is_null()) {
// High priority to retire this branch.
Kokkos::respawn(this, fib_all, Kokkos::TaskPriority::High);
} else {
#if 1
printf(
"TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) "
"task_accum(%ld)\n",
n, 0 // sched.allocation_capacity()
,
0 // sched.allocated_task_count_max()
,
0l // sched.allocated_task_count_accum()
);
#endif
Kokkos::abort("TestFib insufficient memory");
}
}
}
static void run(int i, size_t MemoryCapacity = 16000) {
using memory_space = typename sched_type::memory_space;
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type root_sched(memory_space(), MemoryCapacity, MinBlockSize,
std::min(size_t(MaxBlockSize), MemoryCapacity),
std::min(size_t(SuperBlockSize), MemoryCapacity));
{
future_type f =
Kokkos::host_spawn(Kokkos::TaskSingle(root_sched), TestFib(i));
Kokkos::wait(root_sched);
ASSERT_EQ(eval_fib(i), f.get());
}
ASSERT_EQ(root_sched.queue().allocation_count(), 0);
#if 0
fprintf( stdout, "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, i
, int(root_sched.template spawn_allocation_size<TestFib>())
, int(root_sched.when_all_allocation_size(2))
, root_sched.allocation_capacity()
, root_sched.allocated_task_count_max()
, root_sched.allocated_task_count_accum()
);
fflush( stdout );
#endif
}
};
} // namespace TestTaskScheduler
// </editor-fold> end TestFib }}}1
//==============================================================================
//----------------------------------------------------------------------------
//==============================================================================
// <editor-fold desc="TestTaskDependence"> {{{1
namespace TestTaskScheduler {
template <class Scheduler>
struct TestTaskDependence {
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, Scheduler>;
using accum_type = Kokkos::View<long, typename sched_type::execution_space>;
using value_type = void;
accum_type m_accum;
long m_count;
KOKKOS_INLINE_FUNCTION
TestTaskDependence(long n, const accum_type& arg_accum)
: m_accum(arg_accum), m_count(n) {}
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member) {
auto& sched = member.scheduler();
enum { CHUNK = 8 };
const int n = CHUNK < m_count ? CHUNK : m_count;
if (1 < m_count) {
const int increment = (m_count + n - 1) / n;
future_type f = sched.when_all(n, [this, &member, increment](int i) {
const long inc = increment;
const long begin = i * inc;
const long count = begin + inc < m_count ? inc : m_count - begin;
return Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()),
TestTaskDependence(count, m_accum));
});
m_count = 0;
Kokkos::respawn(this, f);
} else if (1 == m_count) {
Kokkos::atomic_increment(&m_accum());
}
}
static void run(int n) {
using memory_space = typename sched_type::memory_space;
enum { MemoryCapacity = 16000 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize,
SuperBlockSize);
accum_type accum("accum");
typename accum_type::HostMirror host_accum =
Kokkos::create_mirror_view(accum);
Kokkos::host_spawn(Kokkos::TaskSingle(sched), TestTaskDependence(n, accum));
Kokkos::wait(sched);
Kokkos::deep_copy(host_accum, accum);
ASSERT_EQ(host_accum(), n);
}
};
} // namespace TestTaskScheduler
// </editor-fold> end TestTaskDependence }}}1
//==============================================================================
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template <class Scheduler>
struct TestTaskTeam {
// enum { SPAN = 8 };
enum { SPAN = 33 };
// enum { SPAN = 1 };
using value_type = void;
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, sched_type>;
using ExecSpace = typename sched_type::execution_space;
using view_type = Kokkos::View<long*, ExecSpace>;
future_type future;
view_type parfor_result;
view_type parreduce_check;
view_type parscan_result;
view_type parscan_check;
const long nvalue;
KOKKOS_INLINE_FUNCTION
TestTaskTeam(const view_type& arg_parfor_result,
const view_type& arg_parreduce_check,
const view_type& arg_parscan_result,
const view_type& arg_parscan_check, const long arg_nvalue)
: future(),
parfor_result(arg_parfor_result),
parreduce_check(arg_parreduce_check),
parscan_result(arg_parscan_result),
parscan_check(arg_parscan_check),
nvalue(arg_nvalue) {}
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member) {
auto& sched = member.scheduler();
const long end = nvalue + 1;
// begin = max(end - SPAN, 0);
const long begin = 0 < end - SPAN ? end - SPAN : 0;
if (0 < begin && future.is_null()) {
if (member.team_rank() == 0) {
future = Kokkos::task_spawn(
Kokkos::TaskTeam(sched),
TestTaskTeam(parfor_result, parreduce_check, parscan_result,
parscan_check, begin - 1));
#if !defined(__HIP_DEVICE_COMPILE__) && !defined(__CUDA_ARCH__)
assert(!future.is_null());
#endif
Kokkos::respawn(this, future);
}
return;
}
Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end),
[&](int i) { parfor_result[i] = i; });
// Test parallel_reduce without join.
long tot = 0;
long expected = (begin + end - 1) * (end - begin) * 0.5;
Kokkos::parallel_reduce(
Kokkos::TeamThreadRange(member, begin, end),
[&](int i, long& res) { res += parfor_result[i]; }, tot);
Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end),
[&](int i) { parreduce_check[i] = expected - tot; });
// Test parallel_reduce with join.
tot = 0;
Kokkos::parallel_reduce(
Kokkos::TeamThreadRange(member, begin, end),
[&](int i, long& res) { res += parfor_result[i]; },
Kokkos::Sum<long>(tot));
Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end),
[&](int i) { parreduce_check[i] += expected - tot; });
// Test parallel_scan.
// Exclusive scan.
Kokkos::parallel_scan<long>(Kokkos::TeamThreadRange(member, begin, end),
[&](int i, long& val, const bool final) {
if (final) {
parscan_result[i] = val;
}
val += i;
});
// Wait for 'parscan_result' before testing it.
member.team_barrier();
if (member.team_rank() == 0) {
for (long i = begin; i < end; ++i) {
parscan_check[i] =
(i * (i - 1) - begin * (begin - 1)) * 0.5 - parscan_result[i];
}
}
// Don't overwrite 'parscan_result' until it has been tested.
member.team_barrier();
// Inclusive scan.
Kokkos::parallel_scan<long>(Kokkos::TeamThreadRange(member, begin, end),
[&](int i, long& val, const bool final) {
val += i;
if (final) {
parscan_result[i] = val;
}
});
// Wait for 'parscan_result' before testing it.
member.team_barrier();
if (member.team_rank() == 0) {
for (long i = begin; i < end; ++i) {
parscan_check[i] +=
(i * (i + 1) - begin * (begin - 1)) * 0.5 - parscan_result[i];
}
}
// ThreadVectorRange check.
/*
long result = 0;
expected = ( begin + end - 1 ) * ( end - begin ) * 0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange( member, 0, 1 )
, [&] ( const int i, long & outerUpdate )
{
long sum_j = 0.0;
Kokkos::parallel_reduce( Kokkos::ThreadVectorRange( member, end -
begin ) , [&] ( const int j, long & innerUpdate )
{
innerUpdate += begin + j;
}, sum_j );
outerUpdate += sum_j;
}, result );
Kokkos::parallel_for( Kokkos::TeamThreadRange( member, begin, end )
, [&] ( int i )
{
parreduce_check[i] += result - expected;
});
*/
}
static void run(long n) {
const unsigned memory_capacity = 400000;
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type root_sched(typename sched_type::memory_space(), memory_capacity,
MinBlockSize, MaxBlockSize, SuperBlockSize);
view_type root_parfor_result("parfor_result", n + 1);
view_type root_parreduce_check("parreduce_check", n + 1);
view_type root_parscan_result("parscan_result", n + 1);
view_type root_parscan_check("parscan_check", n + 1);
typename view_type::HostMirror host_parfor_result =
Kokkos::create_mirror_view(root_parfor_result);
typename view_type::HostMirror host_parreduce_check =
Kokkos::create_mirror_view(root_parreduce_check);
typename view_type::HostMirror host_parscan_result =
Kokkos::create_mirror_view(root_parscan_result);
typename view_type::HostMirror host_parscan_check =
Kokkos::create_mirror_view(root_parscan_check);
future_type f = Kokkos::host_spawn(
Kokkos::TaskTeam(root_sched),
TestTaskTeam(root_parfor_result, root_parreduce_check,
root_parscan_result, root_parscan_check, n));
Kokkos::wait(root_sched);
Kokkos::deep_copy(host_parfor_result, root_parfor_result);
Kokkos::deep_copy(host_parreduce_check, root_parreduce_check);
Kokkos::deep_copy(host_parscan_result, root_parscan_result);
Kokkos::deep_copy(host_parscan_check, root_parscan_check);
long error_count = 0;
for (long i = 0; i <= n; ++i) {
const long answer = i;
if (host_parfor_result(i) != answer) {
++error_count;
std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i
<< ") = " << host_parfor_result(i) << " != " << answer
<< std::endl;
}
if (host_parreduce_check(i) != 0) {
++error_count;
std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i
<< ") = " << host_parreduce_check(i) << " != 0" << std::endl;
}
if (host_parscan_check(i) != 0) {
++error_count;
std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i
<< ") = " << host_parscan_check(i) << " != 0" << std::endl;
}
}
ASSERT_EQ(0L, error_count);
}
};
template <class Scheduler>
struct TestTaskTeamValue {
enum { SPAN = 8 };
using value_type = long;
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<value_type, sched_type>;
using ExecSpace = typename sched_type::execution_space;
using view_type = Kokkos::View<long*, ExecSpace>;
future_type future;
view_type result;
const long nvalue;
KOKKOS_INLINE_FUNCTION
TestTaskTeamValue(const view_type& arg_result, const long arg_nvalue)
: future(), result(arg_result), nvalue(arg_nvalue) {}
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type const& member,
value_type& final) {
const long end = nvalue + 1;
const long begin = 0 < end - SPAN ? end - SPAN : 0;
auto& sched = member.scheduler();
if (0 < begin && future.is_null()) {
if (member.team_rank() == 0) {
future = sched.task_spawn(TestTaskTeamValue(result, begin - 1),
Kokkos::TaskTeam);
#if !defined(__HIP_DEVICE_COMPILE__) && !defined(__CUDA_ARCH__)
assert(!future.is_null());
#endif
sched.respawn(this, future);
}
return;
}
Kokkos::parallel_for(Kokkos::TeamThreadRange(member, begin, end),
[&](int i) { result[i] = i + 1; });
if (member.team_rank() == 0) {
final = result[nvalue];
}
Kokkos::memory_fence();
}
static void run(long n) {
const unsigned memory_capacity = 100000;
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type root_sched(typename sched_type::memory_space(), memory_capacity,
MinBlockSize, MaxBlockSize, SuperBlockSize);
view_type root_result("result", n + 1);
typename view_type::HostMirror host_result =
Kokkos::create_mirror_view(root_result);
future_type fv = root_sched.host_spawn(TestTaskTeamValue(root_result, n),
Kokkos::TaskTeam);
Kokkos::wait(root_sched);
Kokkos::deep_copy(host_result, root_result);
if (fv.get() != n + 1) {
std::cerr << "TestTaskTeamValue ERROR future = " << fv.get()
<< " != " << n + 1 << std::endl;
}
for (long i = 0; i <= n; ++i) {
const long answer = i + 1;
if (host_result(i) != answer) {
std::cerr << "TestTaskTeamValue ERROR result(" << i
<< ") = " << host_result(i) << " != " << answer << std::endl;
}
}
}
};
} // namespace TestTaskScheduler
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template <class Scheduler>
struct TestTaskSpawnWithPool {
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, sched_type>;
using value_type = void;
using Space = typename sched_type::execution_space;
int m_count;
Kokkos::MemoryPool<Space> m_pool;
KOKKOS_INLINE_FUNCTION
TestTaskSpawnWithPool(const int& arg_count,
const Kokkos::MemoryPool<Space>& arg_pool)
: m_count(arg_count), m_pool(arg_pool) {}
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member) {
if (m_count) {
Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()),
TestTaskSpawnWithPool(m_count - 1, m_pool));
}
}
static void run() {
using memory_space = typename sched_type::memory_space;
enum { MemoryCapacity = 16000 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize,
SuperBlockSize);
using other_memory_space = typename Space::memory_space;
Kokkos::MemoryPool<Space> pool(other_memory_space(), 10000, 100, 200, 1000);
auto f = Kokkos::host_spawn(Kokkos::TaskSingle(sched),
TestTaskSpawnWithPool(3, pool));
Kokkos::wait(sched);
}
};
} // namespace TestTaskScheduler
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template <class Scheduler>
struct TestTaskCtorsDevice {
using sched_type = Scheduler;
using future_type = Kokkos::BasicFuture<void, sched_type>;
using value_type = void;
using Space = typename sched_type::execution_space;
int m_count;
KOKKOS_INLINE_FUNCTION
TestTaskCtorsDevice(const int& arg_count) : m_count(arg_count) {}
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member) {
// Note: Default construction on the device is not allowed
if (m_count == 4) {
Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()),
TestTaskCtorsDevice(m_count - 1));
} else if (m_count == 3) {
sched_type s = member.scheduler(); // move construct
s = member.scheduler(); // move assignment
Kokkos::task_spawn(Kokkos::TaskSingle(s),
TestTaskCtorsDevice(m_count - 1));
} else if (m_count == 2) {
sched_type s3 =
member.scheduler(); // move construct from member.scheduler();
Kokkos::task_spawn(Kokkos::TaskSingle(s3),
TestTaskCtorsDevice(m_count - 1));
} else if (m_count == 1) {
sched_type s =
member.scheduler(); // move construct from member.scheduler();
sched_type s2 = s; // copy construct from s
Kokkos::task_spawn(Kokkos::TaskSingle(s2),
TestTaskCtorsDevice(m_count - 1));
}
}
static void run() {
using memory_space = typename sched_type::memory_space;
enum { MemoryCapacity = 16000 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize,
SuperBlockSize);
auto f =
Kokkos::host_spawn(Kokkos::TaskSingle(sched), TestTaskCtorsDevice(4));
Kokkos::wait(sched);
// TODO assertions and sanity checks
}
};
} // namespace TestTaskScheduler
//----------------------------------------------------------------------------
namespace TestTaskScheduler {
template <class Scheduler>
struct TestMultipleDependence {
using sched_type = Scheduler;
using future_bool = Kokkos::BasicFuture<bool, sched_type>;
using future_int = Kokkos::BasicFuture<int, sched_type>;
using value_type = bool;
using execution_space = typename sched_type::execution_space;
enum : int { NPerDepth = 6 };
enum : int { NFanout = 3 };
// xlC doesn't like incomplete aggregate constructors, so we have do do this
// manually:
KOKKOS_INLINE_FUNCTION
TestMultipleDependence(int depth, int max_depth)
: m_depth(depth), m_max_depth(max_depth), m_dep() {
// gcc 4.8 has an internal compile error when I give the initializer in the
// class, so I have do do it here
for (int i = 0; i < NPerDepth; ++i) {
m_result_futures[i] = future_bool();
}
}
// xlC doesn't like incomplete aggregate constructors, so we have do do this
// manually:
KOKKOS_INLINE_FUNCTION
TestMultipleDependence(int depth, int max_depth, future_int dep)
: m_depth(depth), m_max_depth(max_depth), m_dep(dep) {
// gcc 4.8 has an internal compile error when I give the initializer in the
// class, so I have do do it here
for (int i = 0; i < NPerDepth; ++i) {
m_result_futures[i] = future_bool();
}
}
int m_depth;
int m_max_depth;
future_int m_dep;
future_bool m_result_futures[NPerDepth];
struct TestCheckReady {
future_int m_dep;
using value_type = bool;
KOKKOS_INLINE_FUNCTION
void operator()(typename Scheduler::member_type&, bool& value) {
// if it was "transiently" ready, this could be false even if we made it a
// dependence of this task
value = m_dep.is_ready();
return;
}
};
struct TestComputeValue {
using value_type = int;
KOKKOS_INLINE_FUNCTION
void operator()(typename Scheduler::member_type&, int& result) {
double value = 0;
// keep this one busy for a while
for (int i = 0; i < 10000; ++i) {
value += i * i / 7.138 / value;
}
// Do something irrelevant
result = int(value) << 2;
return;
}
};
KOKKOS_INLINE_FUNCTION
void operator()(typename sched_type::member_type& member, bool& value) {
if (m_result_futures[0].is_null()) {
if (m_depth == 0) {
// Spawn one expensive task at the root
m_dep = Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()),
TestComputeValue{});
}
// Then check for it to be ready in a whole bunch of other tasks that race
int n_checkers = NPerDepth;
if (m_depth < m_max_depth) {
n_checkers -= NFanout;
for (int i = n_checkers; i < NPerDepth; ++i) {
m_result_futures[i] =
Kokkos::task_spawn(Kokkos::TaskSingle(member.scheduler()),
TestMultipleDependence<Scheduler>(
m_depth + 1, m_max_depth, m_dep));
}
}
for (int i = 0; i < n_checkers; ++i) {
m_result_futures[i] = member.scheduler().spawn(
Kokkos::TaskSingle(m_dep), TestCheckReady{m_dep});
}
auto done = member.scheduler().when_all(m_result_futures, NPerDepth);
Kokkos::respawn(this, done);
return;
} else {
value = true;
for (int i = 0; i < NPerDepth; ++i) {
value = value && !m_result_futures[i].is_null();
if (value) {
value = value && m_result_futures[i].get();
}
}
return;
}
}
static void run(int depth) {
using memory_space = typename sched_type::memory_space;
enum { MemoryCapacity = 1 << 30 };
enum { MinBlockSize = 64 };
enum { MaxBlockSize = 1024 };
enum { SuperBlockSize = 4096 };
sched_type sched(memory_space(), MemoryCapacity, MinBlockSize, MaxBlockSize,
SuperBlockSize);
auto f = Kokkos::host_spawn(Kokkos::TaskSingle(sched),
TestMultipleDependence<Scheduler>(0, depth));
Kokkos::wait(sched);
ASSERT_TRUE(f.get());
}
};
} // namespace TestTaskScheduler
//----------------------------------------------------------------------------
#define KOKKOS_PP_CAT_IMPL(x, y) x##y
#define KOKKOS_TEST_WITH_SUFFIX(x, y) KOKKOS_PP_CAT_IMPL(x, y)
#define TEST_SCHEDULER_SUFFIX _deprecated
#define TEST_SCHEDULER Kokkos::DeprecatedTaskScheduler<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _deprecated_multiple
#define TEST_SCHEDULER Kokkos::DeprecatedTaskSchedulerMultiple<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _single
#define TEST_SCHEDULER Kokkos::TaskScheduler<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _multiple
#define TEST_SCHEDULER Kokkos::TaskSchedulerMultiple<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
// KOKKOS WORKAROUND WIN32: Theses tests hang with msvc
#ifndef _WIN32
#define TEST_SCHEDULER_SUFFIX _chase_lev
#define TEST_SCHEDULER Kokkos::ChaseLevTaskScheduler<TEST_EXECSPACE>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#endif
#if 0
#define TEST_SCHEDULER_SUFFIX _fixed_mempool
#define TEST_SCHEDULER \
Kokkos::SimpleTaskScheduler< \
TEST_EXECSPACE, \
Kokkos::Impl::SingleTaskQueue< \
TEST_EXECSPACE, \
Kokkos::Impl::default_tasking_memory_space_for_execution_space_t< \
TEST_EXECSPACE>, \
Kokkos::Impl::TaskQueueTraitsLockBased, \
Kokkos::Impl::FixedBlockSizeMemoryPool< \
Kokkos::Device< \
TEST_EXECSPACE, \
Kokkos::Impl:: \
default_tasking_memory_space_for_execution_space_t< \
TEST_EXECSPACE>>, \
128, 16>>>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#define TEST_SCHEDULER_SUFFIX _fixed_mempool_multiple
#define TEST_SCHEDULER \
Kokkos::SimpleTaskScheduler< \
TEST_EXECSPACE, \
Kokkos::Impl::MultipleTaskQueue< \
TEST_EXECSPACE, \
Kokkos::Impl::default_tasking_memory_space_for_execution_space_t< \
TEST_EXECSPACE>, \
Kokkos::Impl::TaskQueueTraitsLockBased, \
Kokkos::Impl::FixedBlockSizeMemoryPool< \
Kokkos::Device< \
TEST_EXECSPACE, \
Kokkos::Impl:: \
default_tasking_memory_space_for_execution_space_t< \
TEST_EXECSPACE>>, \
128, 16>>>
#include "TestTaskScheduler_single.hpp"
#undef TEST_SCHEDULER
#undef TEST_SCHEDULER_SUFFIX
#endif
#undef KOKKOS_TEST_WITH_SUFFIX
#undef KOKKOS_PP_CAT_IMPL
#endif // #if defined( KOKKOS_ENABLE_TASKDAG )
#endif // #ifndef KOKKOS_UNITTEST_TASKSCHEDULER_HPP