Files
lammps/src/SPIN/min_spin_cg.cpp
2024-02-06 00:57:46 -05:00

647 lines
18 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Aleksei Ivanov (University of Iceland)
Julien Tranchida (SNL)
Please cite the related publication:
Ivanov, A. V., Uzdin, V. M., & Jónsson, H. (2019). Fast and Robust
Algorithm for the Minimisation of the Energy of Spin Systems. arXiv
preprint arXiv:1904.02669.
------------------------------------------------------------------------- */
#include "min_spin_cg.h"
#include "atom.h"
#include "citeme.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "output.h"
#include "timer.h"
#include "universe.h"
#include "update.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace MathConst;
static const char cite_minstyle_spin_cg[] =
"min_style spin/cg command: doi:10.48550/arXiv.1904.02669\n\n"
"@article{ivanov2019fast,\n"
"title={Fast and Robust Algorithm for the Minimisation of the Energy of "
"Spin Systems},\n"
"author={Ivanov, A. V and Uzdin, V. M. and J{\'o}nsson, H.},\n"
"journal={arXiv preprint arXiv:1904.02669},\n"
"year={2019}\n"
"}\n\n";
// EPS_ENERGY = minimum normalization for energy tolerance
static constexpr double EPS_ENERGY = 1.0e-8;
static constexpr int DELAYSTEP = 5;
/* ---------------------------------------------------------------------- */
MinSpinCG::MinSpinCG(LAMMPS *lmp) :
Min(lmp), g_old(nullptr), g_cur(nullptr), p_s(nullptr), sp_copy(nullptr)
{
if (lmp->citeme) lmp->citeme->add(cite_minstyle_spin_cg);
nlocal_max = 0;
// nreplica = number of partitions
// ireplica = which world I am in universe
nreplica = universe->nworlds;
ireplica = universe->iworld;
use_line_search = 0; // no line search as default option for CG
discrete_factor = 10.0;
}
/* ---------------------------------------------------------------------- */
MinSpinCG::~MinSpinCG()
{
memory->destroy(g_old);
memory->destroy(g_cur);
memory->destroy(p_s);
if (use_line_search)
memory->destroy(sp_copy);
}
/* ---------------------------------------------------------------------- */
void MinSpinCG::init()
{
local_iter = 0;
der_e_cur = 0.0;
der_e_pr = 0.0;
Min::init();
// warning if line_search combined to gneb
if ((nreplica >= 1) && (linestyle != SPIN_NONE) && (comm->me == 0))
error->warning(FLERR,"Line search incompatible with gneb");
// set back use_line_search to 0 if more than one replica
if (linestyle == SPIN_CUBIC && nreplica == 1) {
use_line_search = 1;
}
else{
use_line_search = 0;
}
dts = dt = update->dt;
last_negative = update->ntimestep;
// allocate tables
nlocal_max = atom->nlocal;
memory->grow(g_old,3*nlocal_max,"min/spin/cg:g_old");
memory->grow(g_cur,3*nlocal_max,"min/spin/cg:g_cur");
memory->grow(p_s,3*nlocal_max,"min/spin/cg:p_s");
if (use_line_search)
memory->grow(sp_copy,nlocal_max,3,"min/spin/cg:sp_copy");
}
/* ---------------------------------------------------------------------- */
void MinSpinCG::setup_style()
{
double **v = atom->v;
int nlocal = atom->nlocal;
// check if the atom/spin style is defined
if (!atom->sp_flag)
error->all(FLERR,"min spin/cg requires atom/spin style");
for (int i = 0; i < nlocal; i++)
v[i][0] = v[i][1] = v[i][2] = 0.0;
}
/* ---------------------------------------------------------------------- */
int MinSpinCG::modify_param(int narg, char **arg)
{
if (strcmp(arg[0],"discrete_factor") == 0) {
if (narg < 2) error->all(FLERR,"Illegal fix_modify command");
discrete_factor = utils::numeric(FLERR,arg[1],false,lmp);
return 2;
}
return 0;
}
/* ----------------------------------------------------------------------
set current vector lengths and pointers
called after atoms have migrated
------------------------------------------------------------------------- */
void MinSpinCG::reset_vectors()
{
// atomic dof
// size sp is 4N vector
nvec = 4 * atom->nlocal;
if (nvec) spvec = atom->sp[0];
nvec = 3 * atom->nlocal;
if (nvec) fmvec = atom->fm[0];
if (nvec) xvec = atom->x[0];
if (nvec) fvec = atom->f[0];
}
/* ----------------------------------------------------------------------
minimization via orthogonal spin optimisation
------------------------------------------------------------------------- */
int MinSpinCG::iterate(int maxiter)
{
int nlocal = atom->nlocal;
bigint ntimestep;
double fmdotfm,fmsq;
int flag, flagall;
double **sp = atom->sp;
double der_e_cur_tmp = 0.0;
if (nlocal_max < nlocal) {
local_iter = 0;
nlocal_max = nlocal;
memory->grow(g_old,3*nlocal_max,"min/spin/cg:g_old");
memory->grow(g_cur,3*nlocal_max,"min/spin/cg:g_cur");
memory->grow(p_s,3*nlocal_max,"min/spin/cg:p_s");
if (use_line_search)
memory->grow(sp_copy,nlocal_max,3,"min/spin/cg:sp_copy");
}
for (int iter = 0; iter < maxiter; iter++) {
if (timer->check_timeout(niter))
return TIMEOUT;
ntimestep = ++update->ntimestep;
niter++;
// optimize timestep across processes / replicas
// need a force calculation for timestep optimization
if (use_line_search) {
// here we need to do line search
if (local_iter == 0) {
calc_gradient();
}
calc_search_direction();
der_e_cur = 0.0;
for (int i = 0; i < 3 * nlocal; i++)
der_e_cur += g_cur[i] * p_s[i];
MPI_Allreduce(&der_e_cur,&der_e_cur_tmp,1,MPI_DOUBLE,MPI_SUM,world);
der_e_cur = der_e_cur_tmp;
if (update->multireplica == 1) {
MPI_Allreduce(&der_e_cur_tmp,&der_e_cur,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
for (int i = 0; i < nlocal; i++)
for (int j = 0; j < 3; j++)
sp_copy[i][j] = sp[i][j];
eprevious = ecurrent;
der_e_pr = der_e_cur;
calc_and_make_step(0.0, 1.0, 0);
}
else{
// here we don't do line search
// if gneb calc., nreplica > 1
// then calculate gradients and advance spins
// of intermediate replicas only
calc_gradient();
calc_search_direction();
advance_spins();
neval++;
eprevious = ecurrent;
ecurrent = energy_force(0);
}
// energy tolerance criterion
// only check after DELAYSTEP elapsed since velocties reset to 0
// sync across replicas if running multi-replica minimization
if (update->etol > 0.0 && ntimestep-last_negative > DELAYSTEP) {
if (update->multireplica == 0) {
if (fabs(ecurrent-eprevious) <
update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
return ETOL;
} else {
if (fabs(ecurrent-eprevious) <
update->etol * 0.5*(fabs(ecurrent) + fabs(eprevious) + EPS_ENERGY))
flag = 0;
else flag = 1;
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld);
if (flagall == 0) return ETOL;
}
}
// magnetic torque tolerance criterion
// sync across replicas if running multi-replica minimization
fmdotfm = fmsq = 0.0;
if (update->ftol > 0.0) {
if (normstyle == MAX) fmsq = max_torque(); // max torque norm
else if (normstyle == INF) fmsq = inf_torque(); // inf torque norm
else if (normstyle == TWO) fmsq = total_torque(); // Euclidean torque 2-norm
else error->all(FLERR,"Illegal min_modify command");
fmdotfm = fmsq*fmsq;
if (update->multireplica == 0) {
if (fmdotfm < update->ftol*update->ftol) return FTOL;
} else {
if (fmdotfm < update->ftol*update->ftol) flag = 0;
else flag = 1;
MPI_Allreduce(&flag,&flagall,1,MPI_INT,MPI_SUM,universe->uworld);
if (flagall == 0) return FTOL;
}
}
// output for thermo, dump, restart files
if (output->next == ntimestep) {
timer->stamp();
output->write(ntimestep);
timer->stamp(Timer::OUTPUT);
}
}
return MAXITER;
}
/* ----------------------------------------------------------------------
calculate gradients
---------------------------------------------------------------------- */
void MinSpinCG::calc_gradient()
{
int nlocal = atom->nlocal;
double **sp = atom->sp;
double **fm = atom->fm;
double hbar = force->hplanck/MY_2PI;
double factor;
if (use_line_search)
factor = hbar;
else factor = evaluate_dt();
// loop on all spins on proc.
for (int i = 0; i < nlocal; i++) {
g_cur[3 * i + 0] = (fm[i][0]*sp[i][1] - fm[i][1]*sp[i][0]) * factor;
g_cur[3 * i + 1] = -(fm[i][2]*sp[i][0] - fm[i][0]*sp[i][2]) * factor;
g_cur[3 * i + 2] = (fm[i][1]*sp[i][2] - fm[i][2]*sp[i][1]) * factor;
}
}
/* ----------------------------------------------------------------------
search direction:
The Fletcher-Reeves conj. grad. method
See Jorge Nocedal and Stephen J. Wright 'Numerical
Optimization' Second Edition, 2006 (p. 121)
---------------------------------------------------------------------- */
void MinSpinCG::calc_search_direction()
{
int nlocal = atom->nlocal;
double g2old = 0.0;
double g2 = 0.0;
double beta = 0.0;
double g2_global = 0.0;
double g2old_global = 0.0;
double factor = 1.0;
// for multiple replica do not move end points
if (nreplica > 1)
if (ireplica == 0 || ireplica == nreplica - 1)
factor = 0.0;
if (local_iter == 0 || local_iter % 5 == 0) { // steepest descent direction
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = -g_cur[i] * factor;
g_old[i] = g_cur[i] * factor;
}
} else { // conjugate direction
for (int i = 0; i < 3 * nlocal; i++) {
g2old += g_old[i] * g_old[i];
g2 += g_cur[i] * g_cur[i];
}
// now we need to collect/broadcast beta on this replica
// need to check what is beta for GNEB
MPI_Allreduce(&g2,&g2_global,1,MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&g2old,&g2old_global,1,MPI_DOUBLE,MPI_SUM,world);
// Sum over all replicas. Good for GNEB.
if (nreplica > 1) {
g2 = g2_global * factor;
g2old = g2old_global * factor;
MPI_Allreduce(&g2,&g2_global,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
MPI_Allreduce(&g2old,&g2old_global,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
if (fabs(g2_global) < 1.0e-60) beta = 0.0;
else beta = g2_global / g2old_global;
// calculate conjugate direction
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = (beta * p_s[i] - g_cur[i]) * factor;
g_old[i] = g_cur[i] * factor;
}
}
local_iter++;
}
/* ----------------------------------------------------------------------
rotation of spins along the search direction
---------------------------------------------------------------------- */
void MinSpinCG::advance_spins()
{
int nlocal = atom->nlocal;
double **sp = atom->sp;
double rot_mat[9]; // exponential of matrix made of search direction
double s_new[3];
// loop on all spins on proc.
for (int i = 0; i < nlocal; i++) {
rodrigues_rotation(p_s + 3 * i, rot_mat);
// rotate spins
vm3(rot_mat, sp[i], s_new);
for (int j = 0; j < 3; j++) sp[i][j] = s_new[j];
}
}
/* ----------------------------------------------------------------------
calculate 3x3 matrix exponential using Rodrigues' formula
(R. Murray, Z. Li, and S. Shankar Sastry,
A Mathematical Introduction to
Robotic Manipulation (1994), p. 28 and 30).
upp_tr - vector x, y, z so that one calculate
U = exp(A) with A= [[0, x, y],
[-x, 0, z],
[-y, -z, 0]]
------------------------------------------------------------------------- */
void MinSpinCG::rodrigues_rotation(const double *upp_tr, double *out)
{
double theta,A,B,D,x,y,z;
double s1,s2,s3,a1,a2,a3;
if (fabs(upp_tr[0]) < 1.0e-40 &&
fabs(upp_tr[1]) < 1.0e-40 &&
fabs(upp_tr[2]) < 1.0e-40) {
// if upp_tr is zero, return unity matrix
for (int k = 0; k < 3; k++) {
for (int m = 0; m < 3; m++) {
if (m == k) out[3 * k + m] = 1.0;
else out[3 * k + m] = 0.0;
}
}
return;
}
theta = sqrt(upp_tr[0] * upp_tr[0] +
upp_tr[1] * upp_tr[1] +
upp_tr[2] * upp_tr[2]);
A = cos(theta);
B = sin(theta);
D = 1.0 - A;
x = upp_tr[0]/theta;
y = upp_tr[1]/theta;
z = upp_tr[2]/theta;
// diagonal elements of U
out[0] = A + z * z * D;
out[4] = A + y * y * D;
out[8] = A + x * x * D;
// off diagonal of U
s1 = -y * z *D;
s2 = x * z * D;
s3 = -x * y * D;
a1 = x * B;
a2 = y * B;
a3 = z * B;
out[1] = s1 + a1;
out[3] = s1 - a1;
out[2] = s2 + a2;
out[6] = s2 - a2;
out[5] = s3 + a3;
out[7] = s3 - a3;
}
/* ----------------------------------------------------------------------
out = vector^T x m,
m -- 3x3 matrix , v -- 3-d vector
------------------------------------------------------------------------- */
void MinSpinCG::vm3(const double *m, const double *v, double *out)
{
for (int i = 0; i < 3; i++) {
out[i] = 0.0;
for (int j = 0; j < 3; j++) out[i] += *(m + 3 * j + i) * v[j];
}
}
/* ----------------------------------------------------------------------
advance spins
------------------------------------------------------------------------- */
void MinSpinCG::make_step(double c, double *energy_and_der)
{
double p_scaled[3];
int nlocal = atom->nlocal;
double rot_mat[9]; // exponential of matrix made of search direction
double s_new[3];
double **sp = atom->sp;
double der_e_cur_tmp = 0.0;
for (int i = 0; i < nlocal; i++) {
// scale the search direction
for (int j = 0; j < 3; j++) p_scaled[j] = c * p_s[3 * i + j];
// calculate rotation matrix
rodrigues_rotation(p_scaled, rot_mat);
// rotate spins
vm3(rot_mat, sp[i], s_new);
for (int j = 0; j < 3; j++) sp[i][j] = s_new[j];
}
ecurrent = energy_force(0);
calc_gradient();
neval++;
der_e_cur = 0.0;
for (int i = 0; i < 3 * nlocal; i++) {
der_e_cur += g_cur[i] * p_s[i];
}
MPI_Allreduce(&der_e_cur,&der_e_cur_tmp,1,MPI_DOUBLE,MPI_SUM,world);
der_e_cur = der_e_cur_tmp;
if (update->multireplica == 1) {
MPI_Allreduce(&der_e_cur_tmp,&der_e_cur,1,MPI_DOUBLE,MPI_SUM,universe->uworld);
}
energy_and_der[0] = ecurrent;
energy_and_der[1] = der_e_cur;
}
/* ----------------------------------------------------------------------
Calculate step length which satisfies approximate Wolfe conditions
using the cubic interpolation
------------------------------------------------------------------------- */
int MinSpinCG::calc_and_make_step(double a, double b, int index)
{
double e_and_d[2] = {0.0,0.0};
double alpha,c1,c2,c3;
double **sp = atom->sp;
int nlocal = atom->nlocal;
make_step(b,e_and_d);
ecurrent = e_and_d[0];
der_e_cur = e_and_d[1];
index++;
if (adescent(eprevious,e_and_d[0]) || index == 5) {
MPI_Bcast(&b,1,MPI_DOUBLE,0,world);
for (int i = 0; i < 3 * nlocal; i++) {
p_s[i] = b * p_s[i];
}
return 1;
}
else {
double r,f0,f1,df0,df1;
r = b - a;
f0 = eprevious;
f1 = ecurrent;
df0 = der_e_pr;
df1 = der_e_cur;
c1 = -2.0*(f1-f0)/(r*r*r)+(df1+df0)/(r*r);
c2 = 3.0*(f1-f0)/(r*r)-(df1+2.0*df0)/(r);
c3 = df0;
// f(x) = c1 x^3 + c2 x^2 + c3 x^1 + c4
// has minimum at alpha below. We do not check boundaries.
alpha = (-c2 + sqrt(c2*c2 - 3.0*c1*c3))/(3.0*c1);
MPI_Bcast(&alpha,1,MPI_DOUBLE,0,world);
if (alpha < 0.0) alpha = r/2.0;
for (int i = 0; i < nlocal; i++) {
for (int j = 0; j < 3; j++) sp[i][j] = sp_copy[i][j];
}
calc_and_make_step(0.0, alpha, index);
}
return 0;
}
/* ----------------------------------------------------------------------
Approximate descent
------------------------------------------------------------------------- */
int MinSpinCG::adescent(double phi_0, double phi_j) {
double eps = 1.0e-6;
if (phi_j<=phi_0+eps*fabs(phi_0))
return 1;
else
return 0;
}
/* ----------------------------------------------------------------------
evaluate max timestep
---------------------------------------------------------------------- */
double MinSpinCG::evaluate_dt()
{
double dtmax;
double fmsq;
double fmaxsqone,fmaxsqloc,fmaxsqall;
int nlocal = atom->nlocal;
double **fm = atom->fm;
// finding max fm on this proc.
fmsq = fmaxsqone = fmaxsqloc = fmaxsqall = 0.0;
for (int i = 0; i < nlocal; i++) {
fmsq = fm[i][0]*fm[i][0]+fm[i][1]*fm[i][1]+fm[i][2]*fm[i][2];
fmaxsqone = MAX(fmaxsqone,fmsq);
}
// finding max fm on this replica
fmaxsqloc = fmaxsqone;
MPI_Allreduce(&fmaxsqone,&fmaxsqloc,1,MPI_DOUBLE,MPI_MAX,world);
// finding max fm over all replicas, if necessary
// this communicator would be invalid for multiprocess replicas
fmaxsqall = fmaxsqloc;
if (update->multireplica == 1) {
fmaxsqall = fmaxsqloc;
MPI_Allreduce(&fmaxsqloc,&fmaxsqall,1,MPI_DOUBLE,MPI_MAX,universe->uworld);
}
if (fmaxsqall == 0.0)
error->all(FLERR,"Incorrect fmaxsqall calculation");
// define max timestep by dividing by the
// inverse of max frequency by discrete_factor
dtmax = MY_2PI/(discrete_factor*sqrt(fmaxsqall));
return dtmax;
}