904 lines
27 KiB
C++
904 lines
27 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Julien Tranchida (SNL), Stan Moore (SNL)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "ewald_dipole.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "math_special.h"
|
|
#include "memory.h"
|
|
#include "pair.h"
|
|
#include "update.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
using namespace MathSpecial;
|
|
|
|
#define SMALL 0.00001
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
EwaldDipole::EwaldDipole(LAMMPS *lmp) : Ewald(lmp),
|
|
tk(nullptr), vc(nullptr)
|
|
{
|
|
ewaldflag = dipoleflag = 1;
|
|
group_group_enable = 0;
|
|
tk = nullptr;
|
|
vc = nullptr;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
free all memory
|
|
------------------------------------------------------------------------- */
|
|
|
|
EwaldDipole::~EwaldDipole()
|
|
{
|
|
memory->destroy(tk);
|
|
memory->destroy(vc);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
called once before run
|
|
------------------------------------------------------------------------- */
|
|
|
|
void EwaldDipole::init()
|
|
{
|
|
if (comm->me == 0) utils::logmesg(lmp,"EwaldDipole initialization ...\n");
|
|
|
|
// error check
|
|
|
|
dipoleflag = atom->mu?1:0;
|
|
qsum_qsq(0); // q[i] might not be declared ?
|
|
|
|
if (dipoleflag && q2)
|
|
error->all(FLERR,"Cannot (yet) use charges with Kspace style EwaldDipole");
|
|
|
|
// no triclinic ewald dipole (yet)
|
|
|
|
triclinic_check();
|
|
|
|
triclinic = domain->triclinic;
|
|
if (triclinic)
|
|
error->all(FLERR,"Cannot (yet) use EwaldDipole with triclinic box");
|
|
|
|
if (domain->dimension == 2)
|
|
error->all(FLERR,"Cannot use EwaldDipole with 2d simulation");
|
|
|
|
if (!atom->mu) error->all(FLERR,"Kspace style requires atom attribute mu");
|
|
|
|
if (dipoleflag && strcmp(update->unit_style,"electron") == 0)
|
|
error->all(FLERR,"Cannot (yet) use 'electron' units with dipoles");
|
|
|
|
if (slabflag == 0 && domain->nonperiodic > 0)
|
|
error->all(FLERR,"Cannot use nonperiodic boundaries with EwaldDipole");
|
|
if (slabflag) {
|
|
if (domain->xperiodic != 1 || domain->yperiodic != 1 ||
|
|
domain->boundary[2][0] != 1 || domain->boundary[2][1] != 1)
|
|
error->all(FLERR,"Incorrect boundaries with slab EwaldDipole");
|
|
}
|
|
|
|
// compute two charge force
|
|
|
|
two_charge();
|
|
|
|
// extract short-range Coulombic cutoff from pair style
|
|
|
|
triclinic = domain->triclinic;
|
|
if (triclinic)
|
|
error->all(FLERR,"Cannot yet use triclinic cells with EwaldDipole");
|
|
|
|
pair_check();
|
|
|
|
int itmp;
|
|
auto p_cutoff = (double *) force->pair->extract("cut_coul",itmp);
|
|
if (p_cutoff == nullptr)
|
|
error->all(FLERR,"KSpace style is incompatible with Pair style");
|
|
double cutoff = *p_cutoff;
|
|
|
|
// kspace TIP4P not yet supported
|
|
// qdist = offset only for TIP4P fictitious charge
|
|
|
|
//qdist = 0.0;
|
|
if (tip4pflag)
|
|
error->all(FLERR,"Cannot yet use TIP4P with EwaldDipole");
|
|
|
|
// compute musum & musqsum and warn if no dipole
|
|
|
|
scale = 1.0;
|
|
qqrd2e = force->qqrd2e;
|
|
musum_musq();
|
|
natoms_original = atom->natoms;
|
|
|
|
// set accuracy (force units) from accuracy_relative or accuracy_absolute
|
|
|
|
if (accuracy_absolute >= 0.0) accuracy = accuracy_absolute;
|
|
else accuracy = accuracy_relative * two_charge_force;
|
|
|
|
// setup K-space resolution
|
|
|
|
bigint natoms = atom->natoms;
|
|
|
|
// use xprd,yprd,zprd even if triclinic so grid size is the same
|
|
// adjust z dimension for 2d slab EwaldDipole
|
|
// 3d EwaldDipole just uses zprd since slab_volfactor = 1.0
|
|
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
double zprd_slab = zprd*slab_volfactor;
|
|
|
|
// make initial g_ewald estimate
|
|
// based on desired accuracy and real space cutoff
|
|
// fluid-occupied volume used to estimate real-space error
|
|
// zprd used rather than zprd_slab
|
|
|
|
if (!gewaldflag) {
|
|
if (accuracy <= 0.0)
|
|
error->all(FLERR,"KSpace accuracy must be > 0");
|
|
|
|
// initial guess with old method
|
|
|
|
g_ewald = accuracy*sqrt(natoms*cutoff*xprd*yprd*zprd) / (2.0*mu2);
|
|
if (g_ewald >= 1.0) g_ewald = (1.35 - 0.15*log(accuracy))/cutoff;
|
|
else g_ewald = sqrt(-log(g_ewald)) / cutoff;
|
|
|
|
// try Newton solver
|
|
|
|
double g_ewald_new =
|
|
NewtonSolve(g_ewald,cutoff,natoms,xprd*yprd*zprd,mu2);
|
|
if (g_ewald_new > 0.0) g_ewald = g_ewald_new;
|
|
else error->warning(FLERR,"Ewald/disp Newton solver failed, "
|
|
"using old method to estimate g_ewald");
|
|
}
|
|
|
|
// setup EwaldDipole coefficients so can print stats
|
|
|
|
setup();
|
|
|
|
// final RMS accuracy
|
|
|
|
double lprx = rms(kxmax_orig,xprd,natoms,q2);
|
|
double lpry = rms(kymax_orig,yprd,natoms,q2);
|
|
double lprz = rms(kzmax_orig,zprd_slab,natoms,q2);
|
|
double lpr = sqrt(lprx*lprx + lpry*lpry + lprz*lprz) / sqrt(3.0);
|
|
double q2_over_sqrt = q2 / sqrt(natoms*cutoff*xprd*yprd*zprd_slab);
|
|
double spr = 2.0 *q2_over_sqrt * exp(-g_ewald*g_ewald*cutoff*cutoff);
|
|
double tpr = estimate_table_accuracy(q2_over_sqrt,spr);
|
|
double estimated_accuracy = sqrt(lpr*lpr + spr*spr + tpr*tpr);
|
|
|
|
// stats
|
|
|
|
if (comm->me == 0) {
|
|
std::string mesg = fmt::format(" G vector (1/distance) = {:.8g}\n",g_ewald);
|
|
mesg += fmt::format(" estimated absolute RMS force accuracy = {:.8g}\n",
|
|
estimated_accuracy);
|
|
mesg += fmt::format(" estimated relative force accuracy = {:.8g}\n",
|
|
estimated_accuracy/two_charge_force);
|
|
mesg += fmt::format(" KSpace vectors: actual max1d max3d = {} {} {}\n",
|
|
kcount,kmax,kmax3d);
|
|
mesg += fmt::format(" kxmax kymax kzmax = {} {} {}\n",
|
|
kxmax,kymax,kzmax);
|
|
utils::logmesg(lmp,mesg);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
adjust EwaldDipole coeffs, called initially and whenever volume has changed
|
|
------------------------------------------------------------------------- */
|
|
|
|
void EwaldDipole::setup()
|
|
{
|
|
// volume-dependent factors
|
|
|
|
double xprd = domain->xprd;
|
|
double yprd = domain->yprd;
|
|
double zprd = domain->zprd;
|
|
|
|
// adjustment of z dimension for 2d slab EwaldDipole
|
|
// 3d EwaldDipole just uses zprd since slab_volfactor = 1.0
|
|
|
|
double zprd_slab = zprd*slab_volfactor;
|
|
volume = xprd * yprd * zprd_slab;
|
|
|
|
unitk[0] = 2.0*MY_PI/xprd;
|
|
unitk[1] = 2.0*MY_PI/yprd;
|
|
unitk[2] = 2.0*MY_PI/zprd_slab;
|
|
|
|
int kmax_old = kmax;
|
|
|
|
if (kewaldflag == 0) {
|
|
|
|
// determine kmax
|
|
// function of current box size, accuracy, G_ewald (short-range cutoff)
|
|
|
|
bigint natoms = atom->natoms;
|
|
double err;
|
|
kxmax = 1;
|
|
kymax = 1;
|
|
kzmax = 1;
|
|
|
|
// set kmax in 3 directions to respect accuracy
|
|
|
|
err = rms_dipole(kxmax,xprd,natoms);
|
|
while (err > accuracy) {
|
|
kxmax++;
|
|
err = rms_dipole(kxmax,xprd,natoms);
|
|
}
|
|
|
|
err = rms_dipole(kymax,yprd,natoms);
|
|
while (err > accuracy) {
|
|
kymax++;
|
|
err = rms_dipole(kymax,yprd,natoms);
|
|
}
|
|
|
|
err = rms_dipole(kzmax,zprd,natoms);
|
|
while (err > accuracy) {
|
|
kzmax++;
|
|
err = rms_dipole(kzmax,zprd,natoms);
|
|
}
|
|
|
|
kmax = MAX(kxmax,kymax);
|
|
kmax = MAX(kmax,kzmax);
|
|
kmax3d = 4*kmax*kmax*kmax + 6*kmax*kmax + 3*kmax;
|
|
|
|
double gsqxmx = unitk[0]*unitk[0]*kxmax*kxmax;
|
|
double gsqymx = unitk[1]*unitk[1]*kymax*kymax;
|
|
double gsqzmx = unitk[2]*unitk[2]*kzmax*kzmax;
|
|
gsqmx = MAX(gsqxmx,gsqymx);
|
|
gsqmx = MAX(gsqmx,gsqzmx);
|
|
|
|
kxmax_orig = kxmax;
|
|
kymax_orig = kymax;
|
|
kzmax_orig = kzmax;
|
|
|
|
} else {
|
|
|
|
kxmax = kx_ewald;
|
|
kymax = ky_ewald;
|
|
kzmax = kz_ewald;
|
|
|
|
kxmax_orig = kxmax;
|
|
kymax_orig = kymax;
|
|
kzmax_orig = kzmax;
|
|
|
|
kmax = MAX(kxmax,kymax);
|
|
kmax = MAX(kmax,kzmax);
|
|
kmax3d = 4*kmax*kmax*kmax + 6*kmax*kmax + 3*kmax;
|
|
|
|
double gsqxmx = unitk[0]*unitk[0]*kxmax*kxmax;
|
|
double gsqymx = unitk[1]*unitk[1]*kymax*kymax;
|
|
double gsqzmx = unitk[2]*unitk[2]*kzmax*kzmax;
|
|
gsqmx = MAX(gsqxmx,gsqymx);
|
|
gsqmx = MAX(gsqmx,gsqzmx);
|
|
}
|
|
|
|
gsqmx *= 1.00001;
|
|
|
|
// if size has grown, reallocate k-dependent and nlocal-dependent arrays
|
|
|
|
if (kmax > kmax_old) {
|
|
deallocate();
|
|
allocate();
|
|
group_allocate_flag = 0;
|
|
|
|
memory->destroy(ek);
|
|
memory->destroy(tk);
|
|
memory->destroy(vc);
|
|
memory->destroy3d_offset(cs,-kmax_created);
|
|
memory->destroy3d_offset(sn,-kmax_created);
|
|
nmax = atom->nmax;
|
|
memory->create(ek,nmax,3,"ewald_dipole:ek");
|
|
memory->create(tk,nmax,3,"ewald_dipole:tk");
|
|
memory->create(vc,kmax3d,6,"ewald_dipole:tk");
|
|
memory->create3d_offset(cs,-kmax,kmax,3,nmax,"ewald_dipole:cs");
|
|
memory->create3d_offset(sn,-kmax,kmax,3,nmax,"ewald_dipole:sn");
|
|
kmax_created = kmax;
|
|
}
|
|
|
|
// pre-compute EwaldDipole coefficients
|
|
|
|
coeffs();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute dipole RMS accuracy for a dimension
|
|
------------------------------------------------------------------------- */
|
|
|
|
double EwaldDipole::rms_dipole(int km, double prd, bigint natoms)
|
|
{
|
|
if (natoms == 0) natoms = 1; // avoid division by zero
|
|
|
|
// error from eq.(46), Wang et al., JCP 115, 6351 (2001)
|
|
|
|
double value = 8*MY_PI*mu2*g_ewald/volume *
|
|
sqrt(2*MY_PI*km*km*km/(15.0*natoms)) *
|
|
exp(-MY_PI*MY_PI*km*km/(g_ewald*g_ewald*prd*prd));
|
|
|
|
return value;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute the EwaldDipole long-range force, energy, virial
|
|
------------------------------------------------------------------------- */
|
|
|
|
void EwaldDipole::compute(int eflag, int vflag)
|
|
{
|
|
int i,j,k;
|
|
const double g3 = g_ewald*g_ewald*g_ewald;
|
|
|
|
// set energy/virial flags
|
|
|
|
if (eflag || vflag) ev_setup(eflag,vflag);
|
|
else evflag = evflag_atom = eflag_global = vflag_global =
|
|
eflag_atom = vflag_atom = 0;
|
|
|
|
// if atom count has changed, update qsum and qsqsum
|
|
|
|
if (atom->natoms != natoms_original) {
|
|
musum_musq();
|
|
natoms_original = atom->natoms;
|
|
}
|
|
|
|
// return if there are no charges
|
|
|
|
if (musqsum == 0.0) return;
|
|
|
|
// extend size of per-atom arrays if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(ek);
|
|
memory->destroy(tk);
|
|
memory->destroy(vc);
|
|
memory->destroy3d_offset(cs,-kmax_created);
|
|
memory->destroy3d_offset(sn,-kmax_created);
|
|
nmax = atom->nmax;
|
|
memory->create(ek,nmax,3,"ewald_dipole:ek");
|
|
memory->create(tk,nmax,3,"ewald_dipole:tk");
|
|
memory->create(vc,kmax3d,6,"ewald_dipole:tk");
|
|
memory->create3d_offset(cs,-kmax,kmax,3,nmax,"ewald_dipole:cs");
|
|
memory->create3d_offset(sn,-kmax,kmax,3,nmax,"ewald_dipole:sn");
|
|
kmax_created = kmax;
|
|
}
|
|
|
|
// partial structure factors on each processor
|
|
// total structure factor by summing over procs
|
|
|
|
eik_dot_r();
|
|
|
|
MPI_Allreduce(sfacrl,sfacrl_all,kcount,MPI_DOUBLE,MPI_SUM,world);
|
|
MPI_Allreduce(sfacim,sfacim_all,kcount,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// K-space portion of electric field
|
|
// double loop over K-vectors and local atoms
|
|
// perform per-atom calculations if needed
|
|
|
|
double **f = atom->f;
|
|
double **t = atom->torque;
|
|
double **mu = atom->mu;
|
|
int nlocal = atom->nlocal;
|
|
|
|
int kx,ky,kz;
|
|
double cypz,sypz,exprl,expim;
|
|
double partial,partial_peratom;
|
|
double vcik[6];
|
|
double mudotk;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
ek[i][0] = ek[i][1] = ek[i][2] = 0.0;
|
|
tk[i][0] = tk[i][1] = tk[i][2] = 0.0;
|
|
}
|
|
|
|
for (k = 0; k < kcount; k++) {
|
|
kx = kxvecs[k];
|
|
ky = kyvecs[k];
|
|
kz = kzvecs[k];
|
|
for (j = 0; j<6; j++) vc[k][j] = 0.0;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
|
|
for (j = 0; j<6; j++) vcik[j] = 0.0;
|
|
|
|
// re-evaluating mu dot k
|
|
mudotk = mu[i][0]*kx*unitk[0] + mu[i][1]*ky*unitk[1] + mu[i][2]*kz*unitk[2];
|
|
|
|
// calculating re and im of exp(i*k*ri)
|
|
|
|
cypz = cs[ky][1][i]*cs[kz][2][i] - sn[ky][1][i]*sn[kz][2][i];
|
|
sypz = sn[ky][1][i]*cs[kz][2][i] + cs[ky][1][i]*sn[kz][2][i];
|
|
exprl = cs[kx][0][i]*cypz - sn[kx][0][i]*sypz;
|
|
expim = sn[kx][0][i]*cypz + cs[kx][0][i]*sypz;
|
|
|
|
// taking im of struct_fact x exp(i*k*ri) (for force calc.)
|
|
|
|
partial = (mudotk)*(expim*sfacrl_all[k] - exprl*sfacim_all[k]);
|
|
ek[i][0] += partial * eg[k][0];
|
|
ek[i][1] += partial * eg[k][1];
|
|
ek[i][2] += partial * eg[k][2];
|
|
|
|
// compute field for torque calculation
|
|
|
|
partial_peratom = exprl*sfacrl_all[k] + expim*sfacim_all[k];
|
|
tk[i][0] += partial_peratom * eg[k][0];
|
|
tk[i][1] += partial_peratom * eg[k][1];
|
|
tk[i][2] += partial_peratom * eg[k][2];
|
|
|
|
// total and per-atom virial correction (dipole only)
|
|
|
|
vc[k][0] += vcik[0] = -(partial_peratom * mu[i][0] * eg[k][0]);
|
|
vc[k][1] += vcik[1] = -(partial_peratom * mu[i][1] * eg[k][1]);
|
|
vc[k][2] += vcik[2] = -(partial_peratom * mu[i][2] * eg[k][2]);
|
|
vc[k][3] += vcik[3] = -(partial_peratom * mu[i][0] * eg[k][1]);
|
|
vc[k][4] += vcik[4] = -(partial_peratom * mu[i][0] * eg[k][2]);
|
|
vc[k][5] += vcik[5] = -(partial_peratom * mu[i][1] * eg[k][2]);
|
|
|
|
// taking re-part of struct_fact x exp(i*k*ri)
|
|
// (for per-atom energy and virial calc.)
|
|
|
|
if (evflag_atom) {
|
|
if (eflag_atom) eatom[i] += mudotk*ug[k]*partial_peratom;
|
|
if (vflag_atom)
|
|
for (j = 0; j < 6; j++)
|
|
vatom[i][j] += (ug[k]*mudotk*vg[k][j]*partial_peratom - vcik[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// force and torque calculation
|
|
|
|
const double muscale = qqrd2e * scale;
|
|
|
|
for (i = 0; i < nlocal; i++) {
|
|
f[i][0] += muscale * ek[i][0];
|
|
f[i][1] += muscale * ek[i][1];
|
|
if (slabflag != 2) f[i][2] += muscale * ek[i][2];
|
|
t[i][0] -= muscale * (mu[i][1]*tk[i][2] - mu[i][2]*tk[i][1]);
|
|
t[i][1] -= muscale * (mu[i][2]*tk[i][0] - mu[i][0]*tk[i][2]);
|
|
if (slabflag != 2) t[i][2] -= muscale * (mu[i][0]*tk[i][1] - mu[i][1]*tk[i][0]);
|
|
}
|
|
|
|
// sum global energy across Kspace vevs and add in volume-dependent term
|
|
// taking the re-part of struct_fact_i x struct_fact_j
|
|
// subtracting self energy and scaling
|
|
|
|
if (eflag_global) {
|
|
for (k = 0; k < kcount; k++) {
|
|
energy += ug[k] * (sfacrl_all[k]*sfacrl_all[k] +
|
|
sfacim_all[k]*sfacim_all[k]);
|
|
}
|
|
energy -= musqsum*2.0*g3/3.0/MY_PIS;
|
|
energy *= muscale;
|
|
}
|
|
|
|
// global virial
|
|
|
|
if (vflag_global) {
|
|
double uk;
|
|
for (k = 0; k < kcount; k++) {
|
|
uk = ug[k] * (sfacrl_all[k]*sfacrl_all[k] + sfacim_all[k]*sfacim_all[k]);
|
|
for (j = 0; j < 6; j++) virial[j] += uk*vg[k][j] - vc[k][j];
|
|
}
|
|
for (j = 0; j < 6; j++) virial[j] *= muscale;
|
|
}
|
|
|
|
// per-atom energy/virial
|
|
// energy includes self-energy correction
|
|
|
|
if (evflag_atom) {
|
|
if (eflag_atom) {
|
|
for (i = 0; i < nlocal; i++) {
|
|
eatom[i] -= (mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2])
|
|
*2.0*g3/3.0/MY_PIS;
|
|
eatom[i] *= muscale;
|
|
}
|
|
}
|
|
|
|
if (vflag_atom)
|
|
for (i = 0; i < nlocal; i++)
|
|
for (j = 0; j < 6; j++) vatom[i][j] *= muscale;
|
|
}
|
|
|
|
// 2d slab correction
|
|
|
|
if (slabflag == 1) slabcorr();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute the struc. factors and mu dot k products
|
|
------------------------------------------------------------------------- */
|
|
|
|
void EwaldDipole::eik_dot_r()
|
|
{
|
|
int i,k,l,m,n,ic;
|
|
double cstr1,sstr1,cstr2,sstr2,cstr3,sstr3,cstr4,sstr4;
|
|
double sqk,clpm,slpm;
|
|
double mux, muy, muz;
|
|
double mudotk;
|
|
|
|
double **x = atom->x;
|
|
double **mu = atom->mu;
|
|
int nlocal = atom->nlocal;
|
|
|
|
n = 0;
|
|
mux = muy = muz = 0.0;
|
|
|
|
// loop on different k-directions
|
|
// loop on n kpoints and nlocal atoms
|
|
|
|
// (k,0,0), (0,l,0), (0,0,m)
|
|
|
|
// loop 1: k=1, l=1, m=1
|
|
// define first val. of cos and sin
|
|
|
|
for (ic = 0; ic < 3; ic++) {
|
|
sqk = unitk[ic]*unitk[ic];
|
|
if (sqk <= gsqmx) {
|
|
cstr1 = 0.0;
|
|
sstr1 = 0.0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
cs[0][ic][i] = 1.0;
|
|
sn[0][ic][i] = 0.0;
|
|
cs[1][ic][i] = cos(unitk[ic]*x[i][ic]);
|
|
sn[1][ic][i] = sin(unitk[ic]*x[i][ic]);
|
|
cs[-1][ic][i] = cs[1][ic][i];
|
|
sn[-1][ic][i] = -sn[1][ic][i];
|
|
mudotk = (mu[i][ic]*unitk[ic]);
|
|
cstr1 += mudotk*cs[1][ic][i];
|
|
sstr1 += mudotk*sn[1][ic][i];
|
|
}
|
|
sfacrl[n] = cstr1;
|
|
sfacim[n++] = sstr1;
|
|
}
|
|
}
|
|
|
|
// loop 2: k>1, l>1, m>1
|
|
|
|
for (m = 2; m <= kmax; m++) {
|
|
for (ic = 0; ic < 3; ic++) {
|
|
sqk = m*unitk[ic] * m*unitk[ic];
|
|
if (sqk <= gsqmx) {
|
|
cstr1 = 0.0;
|
|
sstr1 = 0.0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
cs[m][ic][i] = cs[m-1][ic][i]*cs[1][ic][i] -
|
|
sn[m-1][ic][i]*sn[1][ic][i];
|
|
sn[m][ic][i] = sn[m-1][ic][i]*cs[1][ic][i] +
|
|
cs[m-1][ic][i]*sn[1][ic][i];
|
|
cs[-m][ic][i] = cs[m][ic][i];
|
|
sn[-m][ic][i] = -sn[m][ic][i];
|
|
mudotk = (mu[i][ic]*m*unitk[ic]);
|
|
cstr1 += mudotk*cs[m][ic][i];
|
|
sstr1 += mudotk*sn[m][ic][i];
|
|
}
|
|
sfacrl[n] = cstr1;
|
|
sfacim[n++] = sstr1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1 = (k,l,0), 2 = (k,-l,0)
|
|
|
|
for (k = 1; k <= kxmax; k++) {
|
|
for (l = 1; l <= kymax; l++) {
|
|
sqk = (k*unitk[0] * k*unitk[0]) + (l*unitk[1] * l*unitk[1]);
|
|
if (sqk <= gsqmx) {
|
|
cstr1 = 0.0;
|
|
sstr1 = 0.0;
|
|
cstr2 = 0.0;
|
|
sstr2 = 0.0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
mux = mu[i][0];
|
|
muy = mu[i][1];
|
|
|
|
// dir 1: (k,l,0)
|
|
mudotk = (mux*k*unitk[0] + muy*l*unitk[1]);
|
|
cstr1 += mudotk*(cs[k][0][i]*cs[l][1][i]-sn[k][0][i]*sn[l][1][i]);
|
|
sstr1 += mudotk*(sn[k][0][i]*cs[l][1][i]+cs[k][0][i]*sn[l][1][i]);
|
|
|
|
// dir 2: (k,-l,0)
|
|
mudotk = (mux*k*unitk[0] - muy*l*unitk[1]);
|
|
cstr2 += mudotk*(cs[k][0][i]*cs[l][1][i]+sn[k][0][i]*sn[l][1][i]);
|
|
sstr2 += mudotk*(sn[k][0][i]*cs[l][1][i]-cs[k][0][i]*sn[l][1][i]);
|
|
}
|
|
sfacrl[n] = cstr1;
|
|
sfacim[n++] = sstr1;
|
|
sfacrl[n] = cstr2;
|
|
sfacim[n++] = sstr2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1 = (0,l,m), 2 = (0,l,-m)
|
|
|
|
for (l = 1; l <= kymax; l++) {
|
|
for (m = 1; m <= kzmax; m++) {
|
|
sqk = (l*unitk[1] * l*unitk[1]) + (m*unitk[2] * m*unitk[2]);
|
|
if (sqk <= gsqmx) {
|
|
cstr1 = 0.0;
|
|
sstr1 = 0.0;
|
|
cstr2 = 0.0;
|
|
sstr2 = 0.0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
muy = mu[i][1];
|
|
muz = mu[i][2];
|
|
|
|
// dir 1: (0,l,m)
|
|
mudotk = (muy*l*unitk[1] + muz*m*unitk[2]);
|
|
cstr1 += mudotk*(cs[l][1][i]*cs[m][2][i] - sn[l][1][i]*sn[m][2][i]);
|
|
sstr1 += mudotk*(sn[l][1][i]*cs[m][2][i] + cs[l][1][i]*sn[m][2][i]);
|
|
|
|
// dir 2: (0,l,-m)
|
|
mudotk = (muy*l*unitk[1] - muz*m*unitk[2]);
|
|
cstr2 += mudotk*(cs[l][1][i]*cs[m][2][i]+sn[l][1][i]*sn[m][2][i]);
|
|
sstr2 += mudotk*(sn[l][1][i]*cs[m][2][i]-cs[l][1][i]*sn[m][2][i]);
|
|
}
|
|
sfacrl[n] = cstr1;
|
|
sfacim[n++] = sstr1;
|
|
sfacrl[n] = cstr2;
|
|
sfacim[n++] = sstr2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1 = (k,0,m), 2 = (k,0,-m)
|
|
|
|
for (k = 1; k <= kxmax; k++) {
|
|
for (m = 1; m <= kzmax; m++) {
|
|
sqk = (k*unitk[0] * k*unitk[0]) + (m*unitk[2] * m*unitk[2]);
|
|
if (sqk <= gsqmx) {
|
|
cstr1 = 0.0;
|
|
sstr1 = 0.0;
|
|
cstr2 = 0.0;
|
|
sstr2 = 0.0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
mux = mu[i][0];
|
|
muz = mu[i][2];
|
|
|
|
// dir 1: (k,0,m)
|
|
mudotk = (mux*k*unitk[0] + muz*m*unitk[2]);
|
|
cstr1 += mudotk*(cs[k][0][i]*cs[m][2][i]-sn[k][0][i]*sn[m][2][i]);
|
|
sstr1 += mudotk*(sn[k][0][i]*cs[m][2][i]+cs[k][0][i]*sn[m][2][i]);
|
|
|
|
// dir 2: (k,0,-m)
|
|
mudotk = (mux*k*unitk[0] - muz*m*unitk[2]);
|
|
cstr2 += mudotk*(cs[k][0][i]*cs[m][2][i]+sn[k][0][i]*sn[m][2][i]);
|
|
sstr2 += mudotk*(sn[k][0][i]*cs[m][2][i]-cs[k][0][i]*sn[m][2][i]);
|
|
}
|
|
sfacrl[n] = cstr1;
|
|
sfacim[n++] = sstr1;
|
|
sfacrl[n] = cstr2;
|
|
sfacim[n++] = sstr2;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 1 = (k,l,m), 2 = (k,-l,m), 3 = (k,l,-m), 4 = (k,-l,-m)
|
|
|
|
for (k = 1; k <= kxmax; k++) {
|
|
for (l = 1; l <= kymax; l++) {
|
|
for (m = 1; m <= kzmax; m++) {
|
|
sqk = (k*unitk[0] * k*unitk[0]) + (l*unitk[1] * l*unitk[1]) +
|
|
(m*unitk[2] * m*unitk[2]);
|
|
if (sqk <= gsqmx) {
|
|
cstr1 = 0.0;
|
|
sstr1 = 0.0;
|
|
cstr2 = 0.0;
|
|
sstr2 = 0.0;
|
|
cstr3 = 0.0;
|
|
sstr3 = 0.0;
|
|
cstr4 = 0.0;
|
|
sstr4 = 0.0;
|
|
for (i = 0; i < nlocal; i++) {
|
|
mux = mu[i][0];
|
|
muy = mu[i][1];
|
|
muz = mu[i][2];
|
|
|
|
// dir 1: (k,l,m)
|
|
mudotk = (mux*k*unitk[0] + muy*l*unitk[1] + muz*m*unitk[2]);
|
|
clpm = cs[l][1][i]*cs[m][2][i] - sn[l][1][i]*sn[m][2][i];
|
|
slpm = sn[l][1][i]*cs[m][2][i] + cs[l][1][i]*sn[m][2][i];
|
|
cstr1 += mudotk*(cs[k][0][i]*clpm - sn[k][0][i]*slpm);
|
|
sstr1 += mudotk*(sn[k][0][i]*clpm + cs[k][0][i]*slpm);
|
|
|
|
// dir 2: (k,-l,m)
|
|
mudotk = (mux*k*unitk[0] - muy*l*unitk[1] + muz*m*unitk[2]);
|
|
clpm = cs[l][1][i]*cs[m][2][i] + sn[l][1][i]*sn[m][2][i];
|
|
slpm = -sn[l][1][i]*cs[m][2][i] + cs[l][1][i]*sn[m][2][i];
|
|
cstr2 += mudotk*(cs[k][0][i]*clpm - sn[k][0][i]*slpm);
|
|
sstr2 += mudotk*(sn[k][0][i]*clpm + cs[k][0][i]*slpm);
|
|
|
|
// dir 3: (k,l,-m)
|
|
mudotk = (mux*k*unitk[0] + muy*l*unitk[1] - muz*m*unitk[2]);
|
|
clpm = cs[l][1][i]*cs[m][2][i] + sn[l][1][i]*sn[m][2][i];
|
|
slpm = sn[l][1][i]*cs[m][2][i] - cs[l][1][i]*sn[m][2][i];
|
|
cstr3 += mudotk*(cs[k][0][i]*clpm - sn[k][0][i]*slpm);
|
|
sstr3 += mudotk*(sn[k][0][i]*clpm + cs[k][0][i]*slpm);
|
|
|
|
// dir 4: (k,-l,-m)
|
|
mudotk = (mux*k*unitk[0] - muy*l*unitk[1] - muz*m*unitk[2]);
|
|
clpm = cs[l][1][i]*cs[m][2][i] - sn[l][1][i]*sn[m][2][i];
|
|
slpm = -sn[l][1][i]*cs[m][2][i] - cs[l][1][i]*sn[m][2][i];
|
|
cstr4 += mudotk*(cs[k][0][i]*clpm - sn[k][0][i]*slpm);
|
|
sstr4 += mudotk*(sn[k][0][i]*clpm + cs[k][0][i]*slpm);
|
|
}
|
|
sfacrl[n] = cstr1;
|
|
sfacim[n++] = sstr1;
|
|
sfacrl[n] = cstr2;
|
|
sfacim[n++] = sstr2;
|
|
sfacrl[n] = cstr3;
|
|
sfacim[n++] = sstr3;
|
|
sfacrl[n] = cstr4;
|
|
sfacim[n++] = sstr4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Slab-geometry correction term to dampen inter-slab interactions between
|
|
periodically repeating slabs. Yields good approximation to 2D EwaldDipole if
|
|
adequate empty space is left between repeating slabs (J. Chem. Phys.
|
|
111, 3155). Slabs defined here to be parallel to the xy plane. Also
|
|
extended to non-neutral systems (J. Chem. Phys. 131, 094107).
|
|
------------------------------------------------------------------------- */
|
|
|
|
void EwaldDipole::slabcorr()
|
|
{
|
|
// compute local contribution to global dipole moment
|
|
|
|
double dipole = 0.0;
|
|
double **mu = atom->mu;
|
|
int nlocal = atom->nlocal;
|
|
|
|
for (int i = 0; i < nlocal; i++) dipole += mu[i][2];
|
|
|
|
// sum local contributions to get global dipole moment
|
|
|
|
double dipole_all;
|
|
MPI_Allreduce(&dipole,&dipole_all,1,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
// need to make non-neutral systems and/or
|
|
// per-atom energy translationally invariant
|
|
|
|
if (eflag_atom || fabs(qsum) > SMALL) {
|
|
|
|
error->all(FLERR,"Cannot (yet) use kspace slab correction with "
|
|
"long-range dipoles and non-neutral systems or per-atom energy");
|
|
}
|
|
|
|
// compute corrections
|
|
|
|
const double e_slabcorr = MY_2PI*(dipole_all*dipole_all/12.0)/volume;
|
|
const double qscale = qqrd2e * scale;
|
|
|
|
if (eflag_global) energy += qscale * e_slabcorr;
|
|
|
|
// per-atom energy
|
|
|
|
if (eflag_atom) {
|
|
double efact = qscale * MY_2PI/volume/12.0;
|
|
for (int i = 0; i < nlocal; i++)
|
|
eatom[i] += efact * mu[i][2]*dipole_all;
|
|
}
|
|
|
|
// add on torque corrections
|
|
|
|
if (atom->torque) {
|
|
double ffact = qscale * (-4.0*MY_PI/volume);
|
|
double **torque = atom->torque;
|
|
for (int i = 0; i < nlocal; i++) {
|
|
torque[i][0] += ffact * dipole_all * mu[i][1];
|
|
torque[i][1] += -ffact * dipole_all * mu[i][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
compute musum,musqsum,mu2
|
|
called initially, when particle count changes, when dipoles are changed
|
|
------------------------------------------------------------------------- */
|
|
|
|
void EwaldDipole::musum_musq()
|
|
{
|
|
const int nlocal = atom->nlocal;
|
|
|
|
musum = musqsum = mu2 = 0.0;
|
|
if (atom->mu_flag) {
|
|
double** mu = atom->mu;
|
|
double musum_local(0.0), musqsum_local(0.0);
|
|
|
|
for (int i = 0; i < nlocal; i++) {
|
|
musum_local += mu[i][0] + mu[i][1] + mu[i][2];
|
|
musqsum_local += mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2];
|
|
}
|
|
|
|
MPI_Allreduce(&musum_local,&musum,1,MPI_DOUBLE,MPI_SUM,world);
|
|
MPI_Allreduce(&musqsum_local,&musqsum,1,MPI_DOUBLE,MPI_SUM,world);
|
|
|
|
mu2 = musqsum * force->qqrd2e;
|
|
}
|
|
|
|
if (mu2 == 0 && comm->me == 0)
|
|
error->all(FLERR,"Using kspace solver EwaldDipole on system with no dipoles");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Newton solver used to find g_ewald for LJ systems
|
|
------------------------------------------------------------------------- */
|
|
|
|
double EwaldDipole::NewtonSolve(double x, double Rc,
|
|
bigint natoms, double vol, double b2)
|
|
{
|
|
double dx,tol;
|
|
int maxit;
|
|
|
|
maxit = 10000; //Maximum number of iterations
|
|
tol = 0.00001; //Convergence tolerance
|
|
|
|
//Begin algorithm
|
|
|
|
for (int i = 0; i < maxit; i++) {
|
|
dx = f(x,Rc,natoms,vol,b2) / derivf(x,Rc,natoms,vol,b2);
|
|
x = x - dx; //Update x
|
|
if (fabs(dx) < tol) return x;
|
|
if (x < 0 || x != x) // solver failed
|
|
return -1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Calculate f(x)
|
|
------------------------------------------------------------------------- */
|
|
|
|
double EwaldDipole::f(double x, double Rc, bigint natoms, double vol, double b2)
|
|
{
|
|
double a = Rc*x;
|
|
double f = 0.0;
|
|
|
|
double rg2 = a*a;
|
|
double rg4 = rg2*rg2;
|
|
double rg6 = rg4*rg2;
|
|
double Cc = 4.0*rg4 + 6.0*rg2 + 3.0;
|
|
double Dc = 8.0*rg6 + 20.0*rg4 + 30.0*rg2 + 15.0;
|
|
f = (b2/(sqrt(vol*powint(x,4)*powint(Rc,9)*natoms)) *
|
|
sqrt(13.0/6.0*Cc*Cc + 2.0/15.0*Dc*Dc - 13.0/15.0*Cc*Dc) *
|
|
exp(-rg2)) - accuracy;
|
|
|
|
return f;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Calculate numerical derivative f'(x)
|
|
------------------------------------------------------------------------- */
|
|
|
|
double EwaldDipole::derivf(double x, double Rc,
|
|
bigint natoms, double vol, double b2)
|
|
{
|
|
double h = 0.000001; //Derivative step-size
|
|
return (f(x + h,Rc,natoms,vol,b2) - f(x,Rc,natoms,vol,b2)) / h;
|
|
}
|
|
|