362 lines
10 KiB
C++
362 lines
10 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Wan Liang (Chinese Academy of Sciences)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "compute_cna_atom.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "error.h"
|
|
#include "force.h"
|
|
#include "memory.h"
|
|
#include "modify.h"
|
|
#include "neigh_list.h"
|
|
#include "neighbor.h"
|
|
#include "pair.h"
|
|
#include "update.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
static constexpr int MAXNEAR = 16;
|
|
static constexpr int MAXCOMMON = 8;
|
|
|
|
enum { UNKNOWN, FCC, HCP, BCC, ICOS, OTHER };
|
|
enum { NCOMMON, NBOND, MAXBOND, MINBOND };
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeCNAAtom::ComputeCNAAtom(LAMMPS *lmp, int narg, char **arg) :
|
|
Compute(lmp, narg, arg), list(nullptr), nearest(nullptr), nnearest(nullptr), pattern(nullptr)
|
|
{
|
|
if (narg != 4) error->all(FLERR, "Illegal compute cna/atom command");
|
|
|
|
peratom_flag = 1;
|
|
size_peratom_cols = 0;
|
|
|
|
double cutoff = utils::numeric(FLERR, arg[3], false, lmp);
|
|
if (cutoff < 0.0) error->all(FLERR, "Illegal compute cna/atom command");
|
|
cutsq = cutoff * cutoff;
|
|
|
|
nmax = 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
ComputeCNAAtom::~ComputeCNAAtom()
|
|
{
|
|
memory->destroy(nearest);
|
|
memory->destroy(nnearest);
|
|
memory->destroy(pattern);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeCNAAtom::init()
|
|
{
|
|
if (force->pair == nullptr)
|
|
error->all(FLERR, "Compute cna/atom requires a pair style be defined");
|
|
if (sqrt(cutsq) > force->pair->cutforce)
|
|
error->all(FLERR, "Compute cna/atom cutoff is longer than pairwise cutoff");
|
|
|
|
// cannot use neighbor->cutneighmax b/c neighbor has not yet been init
|
|
|
|
if ((2.0 * sqrt(cutsq)) > (force->pair->cutforce + neighbor->skin) && (comm->me == 0))
|
|
error->warning(FLERR, "Compute cna/atom cutoff may be too large to find ghost atom neighbors");
|
|
|
|
// need an occasional full neighbor list
|
|
|
|
neighbor->add_request(this, NeighConst::REQ_FULL | NeighConst::REQ_OCCASIONAL);
|
|
|
|
if (modify->get_compute_by_style(style).size() > 1)
|
|
if (comm->me == 0) error->warning(FLERR, "More than one compute {}", style);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeCNAAtom::init_list(int /*id*/, NeighList *ptr)
|
|
{
|
|
list = ptr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void ComputeCNAAtom::compute_peratom()
|
|
{
|
|
int i, j, k, ii, jj, kk, m, n, inum, jnum, inear, jnear;
|
|
int firstflag, ncommon, nbonds, maxbonds, minbonds;
|
|
int nfcc, nhcp, nbcc4, nbcc6, nico, cj, ck, cl, cm;
|
|
int *ilist, *jlist, *numneigh, **firstneigh;
|
|
int cna[MAXNEAR][4], onenearest[MAXNEAR];
|
|
int common[MAXCOMMON], bonds[MAXCOMMON];
|
|
double xtmp, ytmp, ztmp, delx, dely, delz, rsq;
|
|
|
|
invoked_peratom = update->ntimestep;
|
|
|
|
// grow arrays if necessary
|
|
|
|
if (atom->nmax > nmax) {
|
|
memory->destroy(nearest);
|
|
memory->destroy(nnearest);
|
|
memory->destroy(pattern);
|
|
nmax = atom->nmax;
|
|
|
|
memory->create(nearest, nmax, MAXNEAR, "cna:nearest");
|
|
memory->create(nnearest, nmax, "cna:nnearest");
|
|
memory->create(pattern, nmax, "cna:cna_pattern");
|
|
vector_atom = pattern;
|
|
}
|
|
|
|
// invoke full neighbor list (will copy or build if necessary)
|
|
|
|
neighbor->build_one(list);
|
|
|
|
inum = list->inum;
|
|
ilist = list->ilist;
|
|
numneigh = list->numneigh;
|
|
firstneigh = list->firstneigh;
|
|
|
|
// find the neighbors of each atom within cutoff using full neighbor list
|
|
// nearest[] = atom indices of nearest neighbors, up to MAXNEAR
|
|
// do this for all atoms, not just compute group
|
|
// since CNA calculation requires neighbors of neighbors
|
|
|
|
double **x = atom->x;
|
|
int *mask = atom->mask;
|
|
int nlocal = atom->nlocal;
|
|
|
|
int nerror = 0;
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
xtmp = x[i][0];
|
|
ytmp = x[i][1];
|
|
ztmp = x[i][2];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
n = 0;
|
|
for (jj = 0; jj < jnum; jj++) {
|
|
j = jlist[jj];
|
|
j &= NEIGHMASK;
|
|
|
|
delx = xtmp - x[j][0];
|
|
dely = ytmp - x[j][1];
|
|
delz = ztmp - x[j][2];
|
|
rsq = delx * delx + dely * dely + delz * delz;
|
|
if (rsq < cutsq) {
|
|
if (n < MAXNEAR)
|
|
nearest[i][n++] = j;
|
|
else {
|
|
nerror++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
nnearest[i] = n;
|
|
}
|
|
|
|
// warning message
|
|
|
|
int nerrorall;
|
|
MPI_Allreduce(&nerror, &nerrorall, 1, MPI_INT, MPI_SUM, world);
|
|
if (nerrorall && comm->me == 0)
|
|
error->warning(FLERR, "Too many neighbors in CNA for {} atoms", nerrorall);
|
|
|
|
// compute CNA for each atom in group
|
|
// only performed if # of nearest neighbors = 12 or 14 (fcc,hcp)
|
|
|
|
nerror = 0;
|
|
for (ii = 0; ii < inum; ii++) {
|
|
i = ilist[ii];
|
|
|
|
if (!(mask[i] & groupbit)) {
|
|
pattern[i] = UNKNOWN;
|
|
continue;
|
|
}
|
|
|
|
if (nnearest[i] != 12 && nnearest[i] != 14) {
|
|
pattern[i] = OTHER;
|
|
continue;
|
|
}
|
|
|
|
// loop over near neighbors of I to build cna data structure
|
|
// cna[k][NCOMMON] = # of common neighbors of I with each of its neighs
|
|
// cna[k][NBONDS] = # of bonds between those common neighbors
|
|
// cna[k][MAXBOND] = max # of bonds of any common neighbor
|
|
// cna[k][MINBOND] = min # of bonds of any common neighbor
|
|
|
|
for (m = 0; m < nnearest[i]; m++) {
|
|
j = nearest[i][m];
|
|
|
|
// common = list of neighbors common to atom I and atom J
|
|
// if J is an owned atom, use its near neighbor list to find them
|
|
// if J is a ghost atom, use full neighbor list of I to find them
|
|
// in latter case, must exclude J from I's neighbor list
|
|
|
|
if (j < nlocal) {
|
|
firstflag = 1;
|
|
ncommon = 0;
|
|
for (inear = 0; inear < nnearest[i]; inear++)
|
|
for (jnear = 0; jnear < nnearest[j]; jnear++)
|
|
if (nearest[i][inear] == nearest[j][jnear]) {
|
|
if (ncommon < MAXCOMMON)
|
|
common[ncommon++] = nearest[i][inear];
|
|
else if (firstflag) {
|
|
nerror++;
|
|
firstflag = 0;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
xtmp = x[j][0];
|
|
ytmp = x[j][1];
|
|
ztmp = x[j][2];
|
|
jlist = firstneigh[i];
|
|
jnum = numneigh[i];
|
|
|
|
n = 0;
|
|
for (kk = 0; kk < jnum; kk++) {
|
|
k = jlist[kk];
|
|
k &= NEIGHMASK;
|
|
if (k == j) continue;
|
|
|
|
delx = xtmp - x[k][0];
|
|
dely = ytmp - x[k][1];
|
|
delz = ztmp - x[k][2];
|
|
rsq = delx * delx + dely * dely + delz * delz;
|
|
if (rsq < cutsq) {
|
|
if (n < MAXNEAR)
|
|
onenearest[n++] = k;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
firstflag = 1;
|
|
ncommon = 0;
|
|
for (inear = 0; inear < nnearest[i]; inear++)
|
|
for (jnear = 0; (jnear < n) && (n < MAXNEAR); jnear++)
|
|
if (nearest[i][inear] == onenearest[jnear]) {
|
|
if (ncommon < MAXCOMMON)
|
|
common[ncommon++] = nearest[i][inear];
|
|
else if (firstflag) {
|
|
nerror++;
|
|
firstflag = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
cna[m][NCOMMON] = ncommon;
|
|
|
|
// calculate total # of bonds between common neighbor atoms
|
|
// also max and min # of common atoms any common atom is bonded to
|
|
// bond = pair of atoms within cutoff
|
|
|
|
for (n = 0; n < ncommon; n++) bonds[n] = 0;
|
|
|
|
nbonds = 0;
|
|
for (jj = 0; jj < ncommon - 1; jj++) {
|
|
j = common[jj];
|
|
xtmp = x[j][0];
|
|
ytmp = x[j][1];
|
|
ztmp = x[j][2];
|
|
for (kk = jj + 1; kk < ncommon; kk++) {
|
|
k = common[kk];
|
|
delx = xtmp - x[k][0];
|
|
dely = ytmp - x[k][1];
|
|
delz = ztmp - x[k][2];
|
|
rsq = delx * delx + dely * dely + delz * delz;
|
|
if (rsq < cutsq) {
|
|
nbonds++;
|
|
bonds[jj]++;
|
|
bonds[kk]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
cna[m][NBOND] = nbonds;
|
|
|
|
maxbonds = 0;
|
|
minbonds = MAXCOMMON;
|
|
for (n = 0; n < ncommon; n++) {
|
|
maxbonds = MAX(bonds[n], maxbonds);
|
|
minbonds = MIN(bonds[n], minbonds);
|
|
}
|
|
cna[m][MAXBOND] = maxbonds;
|
|
cna[m][MINBOND] = minbonds;
|
|
}
|
|
|
|
// detect CNA pattern of the atom
|
|
|
|
nfcc = nhcp = nbcc4 = nbcc6 = nico = 0;
|
|
pattern[i] = OTHER;
|
|
|
|
if (nnearest[i] == 12) {
|
|
for (inear = 0; inear < 12; inear++) {
|
|
cj = cna[inear][NCOMMON];
|
|
ck = cna[inear][NBOND];
|
|
cl = cna[inear][MAXBOND];
|
|
cm = cna[inear][MINBOND];
|
|
if (cj == 4 && ck == 2 && cl == 1 && cm == 1)
|
|
nfcc++;
|
|
else if (cj == 4 && ck == 2 && cl == 2 && cm == 0)
|
|
nhcp++;
|
|
else if (cj == 5 && ck == 5 && cl == 2 && cm == 2)
|
|
nico++;
|
|
}
|
|
if (nfcc == 12)
|
|
pattern[i] = FCC;
|
|
else if (nfcc == 6 && nhcp == 6)
|
|
pattern[i] = HCP;
|
|
else if (nico == 12)
|
|
pattern[i] = ICOS;
|
|
|
|
} else if (nnearest[i] == 14) {
|
|
for (inear = 0; inear < 14; inear++) {
|
|
cj = cna[inear][NCOMMON];
|
|
ck = cna[inear][NBOND];
|
|
cl = cna[inear][MAXBOND];
|
|
cm = cna[inear][MINBOND];
|
|
if (cj == 4 && ck == 4 && cl == 2 && cm == 2)
|
|
nbcc4++;
|
|
else if (cj == 6 && ck == 6 && cl == 2 && cm == 2)
|
|
nbcc6++;
|
|
}
|
|
if (nbcc4 == 6 && nbcc6 == 8) pattern[i] = BCC;
|
|
}
|
|
}
|
|
|
|
// warning message
|
|
|
|
MPI_Allreduce(&nerror, &nerrorall, 1, MPI_INT, MPI_SUM, world);
|
|
if (nerrorall && comm->me == 0)
|
|
error->warning(FLERR, "Too many common neighbors in CNA: {}x", nerrorall);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
memory usage of local atom-based array
|
|
------------------------------------------------------------------------- */
|
|
|
|
double ComputeCNAAtom::memory_usage()
|
|
{
|
|
double bytes = (double) nmax * sizeof(int);
|
|
bytes += (double) nmax * MAXNEAR * sizeof(int);
|
|
bytes += (double) nmax * sizeof(double);
|
|
return bytes;
|
|
}
|