87 lines
2.6 KiB
Python
Executable File
87 lines
2.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import numpy as np , pylab, tkinter
|
|
import math
|
|
import matplotlib.pyplot as plt
|
|
import mpmath as mp
|
|
|
|
hbar=0.658212 # Planck's constant (eV.fs/rad)
|
|
J0=0.05 # per-neighbor exchange interaction (eV)
|
|
|
|
# exchange interaction parameters
|
|
J1 = 11.254 # in eV
|
|
J2 = 0.0 # adim
|
|
J3 = 1.0 # in Ang.
|
|
|
|
# initial spins
|
|
S1 = np.array([1.0, 0.0, 0.0])
|
|
S2 = np.array([0.0, 1.0, 0.0])
|
|
|
|
alpha=0.01 # damping coefficient
|
|
pi=math.pi
|
|
|
|
N=30000 # number of timesteps
|
|
dt=0.1 # timestep (fs)
|
|
|
|
# Rodrigues rotation formula
|
|
def rotation_matrix(axis, theta):
|
|
"""
|
|
Return the rotation matrix associated with counterclockwise
|
|
rotation about the given axis by theta radians
|
|
"""
|
|
axis = np.asarray(axis)
|
|
a = math.cos(theta / 2.0)
|
|
b, c, d = -axis * math.sin(theta / 2.0)
|
|
aa, bb, cc, dd = a * a, b * b, c * c, d * d
|
|
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
|
|
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
|
|
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
|
|
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
|
|
|
|
#Definition of the Bethe-Slater function
|
|
def func_BS(x,a,b,c):
|
|
return 4*a*((x/c)**2)*(1-b*(x/c)**2)*np.exp(-(x/c)**2)
|
|
|
|
#Definition of the derivative of the Bethe-Slater function
|
|
def func_dBS(x,a,b,c):
|
|
return 4*a*((x/c)**2)*(1-b*(x/c)**2)*np.exp(-(x/c)**2)
|
|
|
|
# calculating precession field of spin Sr
|
|
def calc_rot_vector(Sr,Sf):
|
|
rot = (J0/hbar)*(Sf-alpha*np.cross(Sf,Sr))/(1.0+alpha**2)
|
|
return rot
|
|
|
|
# second-order ST decomposition as implemented in LAMMPS
|
|
for t in range (0,N):
|
|
# advance s1 by dt/4
|
|
wf1 = calc_rot_vector(S1,S2)
|
|
theta=dt*np.linalg.norm(wf1)*0.25
|
|
axis=wf1/np.linalg.norm(wf1)
|
|
S1 = np.dot(rotation_matrix(axis, theta), S1)
|
|
# advance s2 by dt/2
|
|
wf2 = calc_rot_vector(S2,S1)
|
|
theta=dt*np.linalg.norm(wf2)*0.5
|
|
axis=wf2/np.linalg.norm(wf2)
|
|
S2 = np.dot(rotation_matrix(axis, theta), S2)
|
|
# advance s1 by dt/2
|
|
wf1 = calc_rot_vector(S1,S2)
|
|
theta=dt*np.linalg.norm(wf1)*0.5
|
|
axis=wf1/np.linalg.norm(wf1)
|
|
S1 = np.dot(rotation_matrix(axis, theta), S1)
|
|
# advance s2 by dt/2
|
|
wf2 = calc_rot_vector(S2,S1)
|
|
theta=dt*np.linalg.norm(wf2)*0.5
|
|
axis=wf2/np.linalg.norm(wf2)
|
|
S2 = np.dot(rotation_matrix(axis, theta), S2)
|
|
# advance s1 by dt/4
|
|
wf1 = calc_rot_vector(S1,S2)
|
|
theta=dt*np.linalg.norm(wf1)*0.25
|
|
axis=wf1/np.linalg.norm(wf1)
|
|
S1 = np.dot(rotation_matrix(axis, theta), S1)
|
|
# calc. average magnetization
|
|
Sm = (S1+S2)*0.5
|
|
# calc. energy
|
|
en = -J0*(np.dot(S1,S2))
|
|
# print res. in ps for comparison with LAMMPS
|
|
print(t*dt/1000.0,Sm[0],Sm[1],Sm[2],en)
|