Files
lammps/lib/linalg/dlasd8.cpp

420 lines
14 KiB
C++

/* fortran/dlasd8.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static doublereal c_b8 = 1.;
/* > \brief \b DLASD8 finds the square roots of the roots of the secular equation, and stores, for each elemen
t in D, the distance to its two nearest poles. Used by sbdsdc. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DLASD8 + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd8.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd8.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd8.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DLASD8( ICOMPQ, K, D, Z, VF, VL, DIFL, DIFR, LDDIFR, */
/* DSIGMA, WORK, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER ICOMPQ, INFO, K, LDDIFR */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION D( * ), DIFL( * ), DIFR( LDDIFR, * ), */
/* $ DSIGMA( * ), VF( * ), VL( * ), WORK( * ), */
/* $ Z( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DLASD8 finds the square roots of the roots of the secular equation, */
/* > as defined by the values in DSIGMA and Z. It makes the appropriate */
/* > calls to DLASD4, and stores, for each element in D, the distance */
/* > to its two nearest poles (elements in DSIGMA). It also updates */
/* > the arrays VF and VL, the first and last components of all the */
/* > right singular vectors of the original bidiagonal matrix. */
/* > */
/* > DLASD8 is called from DLASD6. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] ICOMPQ */
/* > \verbatim */
/* > ICOMPQ is INTEGER */
/* > Specifies whether singular vectors are to be computed in */
/* > factored form in the calling routine: */
/* > = 0: Compute singular values only. */
/* > = 1: Compute singular vectors in factored form as well. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The number of terms in the rational function to be solved */
/* > by DLASD4. K >= 1. */
/* > \endverbatim */
/* > */
/* > \param[out] D */
/* > \verbatim */
/* > D is DOUBLE PRECISION array, dimension ( K ) */
/* > On output, D contains the updated singular values. */
/* > \endverbatim */
/* > */
/* > \param[in,out] Z */
/* > \verbatim */
/* > Z is DOUBLE PRECISION array, dimension ( K ) */
/* > On entry, the first K elements of this array contain the */
/* > components of the deflation-adjusted updating row vector. */
/* > On exit, Z is updated. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VF */
/* > \verbatim */
/* > VF is DOUBLE PRECISION array, dimension ( K ) */
/* > On entry, VF contains information passed through DBEDE8. */
/* > On exit, VF contains the first K components of the first */
/* > components of all right singular vectors of the bidiagonal */
/* > matrix. */
/* > \endverbatim */
/* > */
/* > \param[in,out] VL */
/* > \verbatim */
/* > VL is DOUBLE PRECISION array, dimension ( K ) */
/* > On entry, VL contains information passed through DBEDE8. */
/* > On exit, VL contains the first K components of the last */
/* > components of all right singular vectors of the bidiagonal */
/* > matrix. */
/* > \endverbatim */
/* > */
/* > \param[out] DIFL */
/* > \verbatim */
/* > DIFL is DOUBLE PRECISION array, dimension ( K ) */
/* > On exit, DIFL(I) = D(I) - DSIGMA(I). */
/* > \endverbatim */
/* > */
/* > \param[out] DIFR */
/* > \verbatim */
/* > DIFR is DOUBLE PRECISION array, */
/* > dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
/* > dimension ( K ) if ICOMPQ = 0. */
/* > On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
/* > defined and will not be referenced. */
/* > */
/* > If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
/* > normalizing factors for the right singular vector matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] LDDIFR */
/* > \verbatim */
/* > LDDIFR is INTEGER */
/* > The leading dimension of DIFR, must be at least K. */
/* > \endverbatim */
/* > */
/* > \param[in,out] DSIGMA */
/* > \verbatim */
/* > DSIGMA is DOUBLE PRECISION array, dimension ( K ) */
/* > On entry, the first K elements of this array contain the old */
/* > roots of the deflated updating problem. These are the poles */
/* > of the secular equation. */
/* > On exit, the elements of DSIGMA may be very slightly altered */
/* > in value. */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (3*K) */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit. */
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > > 0: if INFO = 1, a singular value did not converge */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup OTHERauxiliary */
/* > \par Contributors: */
/* ================== */
/* > */
/* > Ming Gu and Huan Ren, Computer Science Division, University of */
/* > California at Berkeley, USA */
/* > */
/* ===================================================================== */
/* Subroutine */ int dlasd8_(integer *icompq, integer *k, doublereal *d__,
doublereal *z__, doublereal *vf, doublereal *vl, doublereal *difl,
doublereal *difr, integer *lddifr, doublereal *dsigma, doublereal *
work, integer *info)
{
/* System generated locals */
integer difr_dim1, difr_offset, i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal), d_lmp_sign(doublereal *, doublereal *);
/* Local variables */
integer i__, j;
doublereal dj, rho;
integer iwk1, iwk2, iwk3;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
doublereal temp;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
integer iwk2i, iwk3i;
doublereal diflj, difrj, dsigj;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
extern doublereal dlamc3_(doublereal *, doublereal *);
extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *,
doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *, integer *), dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *, ftnlen), dlaset_(char *, integer *, integer
*, doublereal *, doublereal *, doublereal *, integer *, ftnlen),
xerbla_(char *, integer *, ftnlen);
doublereal dsigjp;
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--z__;
--vf;
--vl;
--difl;
difr_dim1 = *lddifr;
difr_offset = 1 + difr_dim1;
difr -= difr_offset;
--dsigma;
--work;
/* Function Body */
*info = 0;
if (*icompq < 0 || *icompq > 1) {
*info = -1;
} else if (*k < 1) {
*info = -2;
} else if (*lddifr < *k) {
*info = -9;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DLASD8", &i__1, (ftnlen)6);
return 0;
}
/* Quick return if possible */
if (*k == 1) {
d__[1] = abs(z__[1]);
difl[1] = d__[1];
if (*icompq == 1) {
difl[2] = 1.;
difr[(difr_dim1 << 1) + 1] = 1.;
}
return 0;
}
/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
/* be computed with high relative accuracy (barring over/underflow). */
/* This is a problem on machines without a guard digit in */
/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
/* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
/* which on any of these machines zeros out the bottommost */
/* bit of DSIGMA(I) if it is 1; this makes the subsequent */
/* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
/* occurs. On binary machines with a guard digit (almost all */
/* machines) it does not change DSIGMA(I) at all. On hexadecimal */
/* and decimal machines with a guard digit, it slightly */
/* changes the bottommost bits of DSIGMA(I). It does not account */
/* for hexadecimal or decimal machines without guard digits */
/* (we know of none). We use a subroutine call to compute */
/* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
/* this code. */
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
/* L10: */
}
/* Book keeping. */
iwk1 = 1;
iwk2 = iwk1 + *k;
iwk3 = iwk2 + *k;
iwk2i = iwk2 - 1;
iwk3i = iwk3 - 1;
/* Normalize Z. */
rho = dnrm2_(k, &z__[1], &c__1);
dlascl_((char *)"G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info, (
ftnlen)1);
rho *= rho;
/* Initialize WORK(IWK3). */
dlaset_((char *)"A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k, (ftnlen)1);
/* Compute the updated singular values, the arrays DIFL, DIFR, */
/* and the updated Z. */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
dlasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[
iwk2], info);
/* If the root finder fails, report the convergence failure. */
if (*info != 0) {
return 0;
}
work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j];
difl[j] = -work[j];
difr[j + difr_dim1] = -work[j + 1];
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
j]);
/* L20: */
}
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i +
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[
j]);
/* L30: */
}
/* L40: */
}
/* Compute updated Z. */
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
d__2 = sqrt((d__1 = work[iwk3i + i__], abs(d__1)));
z__[i__] = d_lmp_sign(&d__2, &z__[i__]);
/* L50: */
}
/* Update VF and VL. */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
diflj = difl[j];
dj = d__[j];
dsigj = -dsigma[j];
if (j < *k) {
difrj = -difr[j + difr_dim1];
dsigjp = -dsigma[j + 1];
}
work[j] = -z__[j] / diflj / (dsigma[j] + dj);
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigj) - diflj) / (
dsigma[i__] + dj);
/* L60: */
}
i__2 = *k;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[i__] = z__[i__] / (dlamc3_(&dsigma[i__], &dsigjp) + difrj) /
(dsigma[i__] + dj);
/* L70: */
}
temp = dnrm2_(k, &work[1], &c__1);
work[iwk2i + j] = ddot_(k, &work[1], &c__1, &vf[1], &c__1) / temp;
work[iwk3i + j] = ddot_(k, &work[1], &c__1, &vl[1], &c__1) / temp;
if (*icompq == 1) {
difr[j + (difr_dim1 << 1)] = temp;
}
/* L80: */
}
dcopy_(k, &work[iwk2], &c__1, &vf[1], &c__1);
dcopy_(k, &work[iwk3], &c__1, &vl[1], &c__1);
return 0;
/* End of DLASD8 */
} /* dlasd8_ */
#ifdef __cplusplus
}
#endif