Files
lammps/lib/linalg/zlarfg.cpp

262 lines
7.3 KiB
C++

/* fortran/zlarfg.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static doublecomplex c_b5 = {1.,0.};
/* > \brief \b ZLARFG generates an elementary reflector (Householder matrix). */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZLARFG + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfg.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfg.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfg.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLARFG( N, ALPHA, X, INCX, TAU ) */
/* .. Scalar Arguments .. */
/* INTEGER INCX, N */
/* COMPLEX*16 ALPHA, TAU */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 X( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLARFG generates a complex elementary reflector H of order n, such */
/* > that */
/* > */
/* > H**H * ( alpha ) = ( beta ), H**H * H = I. */
/* > ( x ) ( 0 ) */
/* > */
/* > where alpha and beta are scalars, with beta real, and x is an */
/* > (n-1)-element complex vector. H is represented in the form */
/* > */
/* > H = I - tau * ( 1 ) * ( 1 v**H ) , */
/* > ( v ) */
/* > */
/* > where tau is a complex scalar and v is a complex (n-1)-element */
/* > vector. Note that H is not hermitian. */
/* > */
/* > If the elements of x are all zero and alpha is real, then tau = 0 */
/* > and H is taken to be the unit matrix. */
/* > */
/* > Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 . */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the elementary reflector. */
/* > \endverbatim */
/* > */
/* > \param[in,out] ALPHA */
/* > \verbatim */
/* > ALPHA is COMPLEX*16 */
/* > On entry, the value alpha. */
/* > On exit, it is overwritten with the value beta. */
/* > \endverbatim */
/* > */
/* > \param[in,out] X */
/* > \verbatim */
/* > X is COMPLEX*16 array, dimension */
/* > (1+(N-2)*abs(INCX)) */
/* > On entry, the vector x. */
/* > On exit, it is overwritten with the vector v. */
/* > \endverbatim */
/* > */
/* > \param[in] INCX */
/* > \verbatim */
/* > INCX is INTEGER */
/* > The increment between elements of X. INCX > 0. */
/* > \endverbatim */
/* > */
/* > \param[out] TAU */
/* > \verbatim */
/* > TAU is COMPLEX*16 */
/* > The value tau. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16OTHERauxiliary */
/* ===================================================================== */
/* Subroutine */ int zlarfg_(integer *n, doublecomplex *alpha, doublecomplex *
x, integer *incx, doublecomplex *tau)
{
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
doublecomplex z__1, z__2;
/* Builtin functions */
double d_lmp_imag(doublecomplex *), d_lmp_sign(doublereal *, doublereal *);
/* Local variables */
integer j, knt;
doublereal beta, alphi, alphr;
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
doublereal xnorm;
extern doublereal dlapy3_(doublereal *, doublereal *, doublereal *),
dznrm2_(integer *, doublecomplex *, integer *), dlamch_(char *,
ftnlen);
doublereal safmin;
extern /* Subroutine */ int zdscal_(integer *, doublereal *,
doublecomplex *, integer *);
doublereal rsafmn;
extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
doublecomplex *);
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--x;
/* Function Body */
if (*n <= 0) {
tau->r = 0., tau->i = 0.;
return 0;
}
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
alphr = alpha->r;
alphi = d_lmp_imag(alpha);
if (xnorm == 0. && alphi == 0.) {
/* H = I */
tau->r = 0., tau->i = 0.;
} else {
/* general case */
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = -d_lmp_sign(&d__1, &alphr);
safmin = dlamch_((char *)"S", (ftnlen)1) / dlamch_((char *)"E", (ftnlen)1);
rsafmn = 1. / safmin;
knt = 0;
if (abs(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
L10:
++knt;
i__1 = *n - 1;
zdscal_(&i__1, &rsafmn, &x[1], incx);
beta *= rsafmn;
alphi *= rsafmn;
alphr *= rsafmn;
if (abs(beta) < safmin && knt < 20) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
i__1 = *n - 1;
xnorm = dznrm2_(&i__1, &x[1], incx);
z__1.r = alphr, z__1.i = alphi;
alpha->r = z__1.r, alpha->i = z__1.i;
d__1 = dlapy3_(&alphr, &alphi, &xnorm);
beta = -d_lmp_sign(&d__1, &alphr);
}
d__1 = (beta - alphr) / beta;
d__2 = -alphi / beta;
z__1.r = d__1, z__1.i = d__2;
tau->r = z__1.r, tau->i = z__1.i;
z__2.r = alpha->r - beta, z__2.i = alpha->i;
zladiv_(&z__1, &c_b5, &z__2);
alpha->r = z__1.r, alpha->i = z__1.i;
i__1 = *n - 1;
zscal_(&i__1, alpha, &x[1], incx);
/* If ALPHA is subnormal, it may lose relative accuracy */
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
beta *= safmin;
/* L20: */
}
alpha->r = beta, alpha->i = 0.;
}
return 0;
/* End of ZLARFG */
} /* zlarfg_ */
#ifdef __cplusplus
}
#endif