Files
lammps/src/ML-IAP/mliap_descriptor_snap.cpp
Aidan Thompson f691805062 More
2022-03-11 16:41:22 -07:00

500 lines
14 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Aidan Thompson (SNL)
------------------------------------------------------------------------- */
#include "mliap_descriptor_snap.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "memory.h"
#include "mliap_data.h"
#include "pair_mliap.h"
#include "sna.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
#define MAXLINE 1024
#define MAXWORD 3
/* ---------------------------------------------------------------------- */
MLIAPDescriptorSNAP::MLIAPDescriptorSNAP(LAMMPS *lmp, char *paramfilename):
MLIAPDescriptor(lmp)
{
radelem = nullptr;
wjelem = nullptr;
snaptr = nullptr;
read_paramfile(paramfilename);
snaptr = new SNA(lmp, rfac0, twojmax,
rmin0, switchflag, bzeroflag,
chemflag, bnormflag, wselfallflag,
nelements, switchinnerflag);
ndescriptors = snaptr->ncoeff;
}
/* ---------------------------------------------------------------------- */
MLIAPDescriptorSNAP::~MLIAPDescriptorSNAP()
{
memory->destroy(radelem);
memory->destroy(wjelem);
delete snaptr;
}
/* ----------------------------------------------------------------------
compute descriptors for each atom
---------------------------------------------------------------------- */
void MLIAPDescriptorSNAP::compute_descriptors(class MLIAPData* data)
{
int ij = 0;
for (int ii = 0; ii < data->nlistatoms; ii++) {
const int ielem = data->ielems[ii];
// insure rij, inside, wj, and rcutij are of size jnum
const int jnum = data->numneighs[ii];
snaptr->grow_rij(jnum);
int ninside = 0;
for (int jj = 0; jj < jnum; jj++) {
const int j = data->jatoms[ij];
const int jelem = data->jelems[ij];
const double *delr = data->rij[ij];
snaptr->rij[ninside][0] = delr[0];
snaptr->rij[ninside][1] = delr[1];
snaptr->rij[ninside][2] = delr[2];
snaptr->inside[ninside] = j;
snaptr->wj[ninside] = wjelem[jelem];
snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]);
if (chemflag) snaptr->element[ninside] = jelem;
ninside++;
ij++;
}
if (chemflag)
snaptr->compute_ui(ninside, ielem);
else
snaptr->compute_ui(ninside, 0);
snaptr->compute_zi();
if (chemflag)
snaptr->compute_bi(ielem);
else
snaptr->compute_bi(0);
for (int icoeff = 0; icoeff < data->ndescriptors; icoeff++)
data->descriptors[ii][icoeff] = snaptr->blist[icoeff];
}
}
/* ----------------------------------------------------------------------
compute forces for each atom
---------------------------------------------------------------------- */
void MLIAPDescriptorSNAP::compute_forces(class MLIAPData* data)
{
double fij[3];
double **f = atom->f;
int ij = 0;
for (int ii = 0; ii < data->nlistatoms; ii++) {
const int i = data->iatoms[ii];
const int ielem = data->ielems[ii];
// insure rij, inside, wj, and rcutij are of size jnum
const int jnum = data->numneighs[ii];
snaptr->grow_rij(jnum);
int ninside = 0;
for (int jj = 0; jj < jnum; jj++) {
const int j = data->jatoms[ij];
const int jelem = data->jelems[ij];
const double *delr = data->rij[ij];
snaptr->rij[ninside][0] = delr[0];
snaptr->rij[ninside][1] = delr[1];
snaptr->rij[ninside][2] = delr[2];
snaptr->inside[ninside] = j;
snaptr->wj[ninside] = wjelem[jelem];
snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]);
if (chemflag) snaptr->element[ninside] = jelem;
ninside++;
ij++;
}
// compute Ui, Yi for atom I
if (chemflag)
snaptr->compute_ui(ninside, ielem);
else
snaptr->compute_ui(ninside, 0);
// for neighbors of I within cutoff:
// compute Fij = dEi/dRj = -dEi/dRi
// add to Fi, subtract from Fj
snaptr->compute_yi(data->betas[ii]);
for (int jj = 0; jj < ninside; jj++) {
int j = snaptr->inside[jj];
snaptr->compute_duidrj(jj);
snaptr->compute_deidrj(fij);
f[i][0] += fij[0];
f[i][1] += fij[1];
f[i][2] += fij[2];
f[j][0] -= fij[0];
f[j][1] -= fij[1];
f[j][2] -= fij[2];
// add in global and per-atom virial contributions
// this is optional and has no effect on force calculation
if (data->vflag)
data->pairmliap->v_tally(i,j,fij,snaptr->rij[jj]);
}
}
}
/* ----------------------------------------------------------------------
calculate gradients of forces w.r.t. parameters
---------------------------------------------------------------------- */
void MLIAPDescriptorSNAP::compute_force_gradients(class MLIAPData* data)
{
int ij = 0;
for (int ii = 0; ii < data->nlistatoms; ii++) {
const int i = data->iatoms[ii];
const int ielem = data->ielems[ii];
// insure rij, inside, wj, and rcutij are of size jnum
const int jnum = data->numneighs[ii];
snaptr->grow_rij(jnum);
int ninside = 0;
for (int jj = 0; jj < jnum; jj++) {
const int j = data->jatoms[ij];
const int jelem = data->jelems[ij];
const double *delr = data->rij[ij];
snaptr->rij[ninside][0] = delr[0];
snaptr->rij[ninside][1] = delr[1];
snaptr->rij[ninside][2] = delr[2];
snaptr->inside[ninside] = j;
snaptr->wj[ninside] = wjelem[jelem];
snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]);
if (chemflag) snaptr->element[ninside] = jelem;
ninside++;
ij++;
}
if (chemflag)
snaptr->compute_ui(ninside, ielem);
else
snaptr->compute_ui(ninside, 0);
snaptr->compute_zi();
if (chemflag)
snaptr->compute_bi(ielem);
else
snaptr->compute_bi(0);
for (int jj = 0; jj < ninside; jj++) {
const int j = snaptr->inside[jj];
snaptr->compute_duidrj(jj);
snaptr->compute_dbidrj();
// Accumulate gamma_lk*dB_k/dRi, -gamma_lk**dB_k/dRj
for (int inz = 0; inz < data->gamma_nnz; inz++) {
const int l = data->gamma_row_index[ii][inz];
const int k = data->gamma_col_index[ii][inz];
data->gradforce[i][l] += data->gamma[ii][inz]*snaptr->dblist[k][0];
data->gradforce[i][l+data->yoffset] += data->gamma[ii][inz]*snaptr->dblist[k][1];
data->gradforce[i][l+data->zoffset] += data->gamma[ii][inz]*snaptr->dblist[k][2];
data->gradforce[j][l] -= data->gamma[ii][inz]*snaptr->dblist[k][0];
data->gradforce[j][l+data->yoffset] -= data->gamma[ii][inz]*snaptr->dblist[k][1];
data->gradforce[j][l+data->zoffset] -= data->gamma[ii][inz]*snaptr->dblist[k][2];
}
}
}
}
/* ----------------------------------------------------------------------
compute descriptor gradients for each neighbor atom
---------------------------------------------------------------------- */
void MLIAPDescriptorSNAP::compute_descriptor_gradients(class MLIAPData* data)
{
int ij = 0;
for (int ii = 0; ii < data->nlistatoms; ii++) {
const int ielem = data->ielems[ii];
// insure rij, inside, wj, and rcutij are of size jnum
const int jnum = data->numneighs[ii];
snaptr->grow_rij(jnum);
int ij0 = ij;
int ninside = 0;
for (int jj = 0; jj < jnum; jj++) {
const int j = data->jatoms[ij];
const int jelem = data->jelems[ij];
const double *delr = data->rij[ij];
snaptr->rij[ninside][0] = delr[0];
snaptr->rij[ninside][1] = delr[1];
snaptr->rij[ninside][2] = delr[2];
snaptr->inside[ninside] = j;
snaptr->wj[ninside] = wjelem[jelem];
snaptr->rcutij[ninside] = sqrt(cutsq[ielem][jelem]);
if (chemflag) snaptr->element[ninside] = jelem;
ninside++;
ij++;
}
if (chemflag)
snaptr->compute_ui(ninside, ielem);
else
snaptr->compute_ui(ninside, 0);
snaptr->compute_zi();
if (chemflag)
snaptr->compute_bi(ielem);
else
snaptr->compute_bi(0);
ij = ij0;
for (int jj = 0; jj < ninside; jj++) {
snaptr->compute_duidrj(jj);
snaptr->compute_dbidrj();
// Accumulate dB_k^i/dRi, dB_k^i/dRj
for (int k = 0; k < data->ndescriptors; k++) {
data->graddesc[ij][k][0] = snaptr->dblist[k][0];
data->graddesc[ij][k][1] = snaptr->dblist[k][1];
data->graddesc[ij][k][2] = snaptr->dblist[k][2];
}
ij++;
}
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void MLIAPDescriptorSNAP::init()
{
snaptr->init();
}
/* ---------------------------------------------------------------------- */
void MLIAPDescriptorSNAP::read_paramfile(char *paramfilename)
{
// set flags for required keywords
int rcutfacflag = 0;
int twojmaxflag = 0;
int nelementsflag = 0;
int elementsflag = 0;
int radelemflag = 0;
int wjelemflag = 0;
// Set defaults for optional keywords
rfac0 = 0.99363;
rmin0 = 0.0;
switchflag = 1;
bzeroflag = 1;
chemflag = 0;
bnormflag = 0;
wselfallflag = 0;
switchinnerflag = 0;
for (int i = 0; i < nelements; i++) delete[] elements[i];
delete[] elements;
memory->destroy(radelem);
memory->destroy(wjelem);
memory->destroy(cutsq);
// open SNAP parameter file on proc 0
FILE *fpparam;
if (comm->me == 0) {
fpparam = utils::open_potential(paramfilename,lmp,nullptr);
if (fpparam == nullptr)
error->one(FLERR,"Cannot open SNAP parameter file {}: {}",
paramfilename, utils::getsyserror());
}
char line[MAXLINE],*ptr;
int eof = 0;
int n,nwords;
while (true) {
if (comm->me == 0) {
ptr = fgets(line,MAXLINE,fpparam);
if (ptr == nullptr) {
eof = 1;
fclose(fpparam);
} else n = strlen(line) + 1;
}
MPI_Bcast(&eof,1,MPI_INT,0,world);
if (eof) break;
MPI_Bcast(&n,1,MPI_INT,0,world);
MPI_Bcast(line,n,MPI_CHAR,0,world);
// strip comment, skip line if blank
if ((ptr = strchr(line,'#'))) *ptr = '\0';
nwords = utils::count_words(line);
if (nwords == 0) continue;
// words = ptrs to all words in line
// strip single and double quotes from words
char* keywd = strtok(line,"' \t\n\r\f");
char* keyval = strtok(nullptr,"' \t\n\r\f");
// check for keywords with one value per element
if (strcmp(keywd,"elems") == 0 ||
strcmp(keywd,"radelems") == 0 ||
strcmp(keywd,"welems") == 0) {
if (nelementsflag == 0 || nwords != nelements+1)
error->all(FLERR,"Incorrect SNAP parameter file");
if (comm->me == 0)
utils::logmesg(lmp,"SNAP keyword {} {} ... \n", keywd, keyval);
if (strcmp(keywd,"elems") == 0) {
for (int ielem = 0; ielem < nelements; ielem++) {
elements[ielem] = utils::strdup(keyval);
keyval = strtok(nullptr,"' \t\n\r\f");
}
elementsflag = 1;
} else if (strcmp(keywd,"radelems") == 0) {
for (int ielem = 0; ielem < nelements; ielem++) {
radelem[ielem] = utils::numeric(FLERR,keyval,false,lmp);
keyval = strtok(nullptr,"' \t\n\r\f");
}
radelemflag = 1;
} else if (strcmp(keywd,"welems") == 0) {
for (int ielem = 0; ielem < nelements; ielem++) {
wjelem[ielem] = utils::numeric(FLERR,keyval,false,lmp);
keyval = strtok(nullptr,"' \t\n\r\f");
}
wjelemflag = 1;
}
} else {
// all other keywords take one value
if (nwords != 2)
error->all(FLERR,"Incorrect SNAP parameter file");
if (comm->me == 0)
utils::logmesg(lmp,"SNAP keyword {} {} \n", keywd, keyval);
if (strcmp(keywd,"nelems") == 0) {
nelements = atoi(keyval);
elements = new char*[nelements];
memory->create(radelem,nelements,"mliap_snap_descriptor:radelem");
memory->create(wjelem,nelements,"mliap_snap_descriptor:wjelem");
nelementsflag = 1;
} else if (strcmp(keywd,"rcutfac") == 0) {
rcutfac = atof(keyval);
rcutfacflag = 1;
} else if (strcmp(keywd,"twojmax") == 0) {
twojmax = atoi(keyval);
twojmaxflag = 1;
} else if (strcmp(keywd,"rfac0") == 0)
rfac0 = atof(keyval);
else if (strcmp(keywd,"rmin0") == 0)
rmin0 = atof(keyval);
else if (strcmp(keywd,"switchflag") == 0)
switchflag = atoi(keyval);
else if (strcmp(keywd,"bzeroflag") == 0)
bzeroflag = atoi(keyval);
else if (strcmp(keywd,"chemflag") == 0)
chemflag = atoi(keyval);
else if (strcmp(keywd,"bnormflag") == 0)
bnormflag = atoi(keyval);
else if (strcmp(keywd,"wselfallflag") == 0)
wselfallflag = atoi(keyval);
else
error->all(FLERR,"Incorrect SNAP parameter file");
}
}
if (!rcutfacflag || !twojmaxflag || !nelementsflag ||
!elementsflag || !radelemflag || !wjelemflag)
error->all(FLERR,"Incorrect SNAP parameter file");
// construct cutsq
double cut;
cutmax = 0.0;
memory->create(cutsq,nelements,nelements,"mliap/descriptor/snap:cutsq");
for (int ielem = 0; ielem < nelements; ielem++) {
cut = 2.0*radelem[ielem]*rcutfac;
if (cut > cutmax) cutmax = cut;
cutsq[ielem][ielem] = cut*cut;
for (int jelem = ielem+1; jelem < nelements; jelem++) {
cut = (radelem[ielem]+radelem[jelem])*rcutfac;
cutsq[ielem][jelem] = cutsq[jelem][ielem] = cut*cut;
}
}
}
/* ----------------------------------------------------------------------
memory usage
------------------------------------------------------------------------- */
double MLIAPDescriptorSNAP::memory_usage()
{
double bytes = MLIAPDescriptor::memory_usage();
bytes += snaptr->memory_usage(); // SNA object
return bytes;
}