854 lines
27 KiB
C++
854 lines
27 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
LAMMPS development team: developers@lammps.org
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Joel Clemmer (SNL)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "bond_bpm_rotational.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "domain.h"
|
|
#include "error.h"
|
|
#include "fix_bond_history.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "math_extra.h"
|
|
#include "memory.h"
|
|
#include "modify.h"
|
|
#include "neighbor.h"
|
|
#include "update.h"
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
|
|
static constexpr double EPSILON = 1e-10;
|
|
|
|
using namespace LAMMPS_NS;
|
|
using MathConst::MY_SQRT2;
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
static double acos_limit(double c)
|
|
{
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
return acos(c);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
BondBPMRotational::BondBPMRotational(LAMMPS *_lmp) :
|
|
BondBPM(_lmp), Kr(nullptr), Ks(nullptr), Kt(nullptr), Kb(nullptr), gnorm(nullptr),
|
|
gslide(nullptr), groll(nullptr), gtwist(nullptr), Fcr(nullptr), Fcs(nullptr), Tct(nullptr),
|
|
Tcb(nullptr)
|
|
{
|
|
partial_flag = 1;
|
|
smooth_flag = 1;
|
|
normalize_flag = 0;
|
|
writedata = 0;
|
|
|
|
nhistory = 4;
|
|
id_fix_bond_history = utils::strdup("HISTORY_BPM_ROTATIONAL");
|
|
|
|
single_extra = 7;
|
|
svector = new double[7];
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
BondBPMRotational::~BondBPMRotational()
|
|
{
|
|
delete[] svector;
|
|
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(Kr);
|
|
memory->destroy(Ks);
|
|
memory->destroy(Kt);
|
|
memory->destroy(Kb);
|
|
memory->destroy(Fcr);
|
|
memory->destroy(Fcs);
|
|
memory->destroy(Tct);
|
|
memory->destroy(Tcb);
|
|
memory->destroy(gnorm);
|
|
memory->destroy(gslide);
|
|
memory->destroy(groll);
|
|
memory->destroy(gtwist);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Store data for a single bond - if bond added after LAMMPS init (e.g. pour)
|
|
------------------------------------------------------------------------- */
|
|
|
|
double BondBPMRotational::store_bond(int n, int i, int j)
|
|
{
|
|
double delx, dely, delz, r, rinv;
|
|
double **x = atom->x;
|
|
tagint *tag = atom->tag;
|
|
double **bondstore = fix_bond_history->bondstore;
|
|
|
|
if (tag[i] < tag[j]) {
|
|
delx = x[i][0] - x[j][0];
|
|
dely = x[i][1] - x[j][1];
|
|
delz = x[i][2] - x[j][2];
|
|
} else {
|
|
delx = x[j][0] - x[i][0];
|
|
dely = x[j][1] - x[i][1];
|
|
delz = x[j][2] - x[i][2];
|
|
}
|
|
|
|
r = sqrt(delx * delx + dely * dely + delz * delz);
|
|
rinv = 1.0 / r;
|
|
|
|
bondstore[n][0] = r;
|
|
bondstore[n][1] = delx * rinv;
|
|
bondstore[n][2] = dely * rinv;
|
|
bondstore[n][3] = delz * rinv;
|
|
|
|
if (i < atom->nlocal) {
|
|
for (int m = 0; m < atom->num_bond[i]; m++) {
|
|
if (atom->bond_atom[i][m] == tag[j]) {
|
|
fix_bond_history->update_atom_value(i, m, 0, r);
|
|
fix_bond_history->update_atom_value(i, m, 1, delx * rinv);
|
|
fix_bond_history->update_atom_value(i, m, 2, dely * rinv);
|
|
fix_bond_history->update_atom_value(i, m, 3, delz * rinv);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j < atom->nlocal) {
|
|
for (int m = 0; m < atom->num_bond[j]; m++) {
|
|
if (atom->bond_atom[j][m] == tag[i]) {
|
|
fix_bond_history->update_atom_value(j, m, 0, r);
|
|
fix_bond_history->update_atom_value(j, m, 1, delx * rinv);
|
|
fix_bond_history->update_atom_value(j, m, 2, dely * rinv);
|
|
fix_bond_history->update_atom_value(j, m, 3, delz * rinv);
|
|
}
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Store data for all bonds called once
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::store_data()
|
|
{
|
|
int i, j, m, type;
|
|
double delx, dely, delz, r, rinv;
|
|
double **x = atom->x;
|
|
int **bond_type = atom->bond_type;
|
|
tagint *tag = atom->tag;
|
|
|
|
for (i = 0; i < atom->nlocal; i++) {
|
|
for (m = 0; m < atom->num_bond[i]; m++) {
|
|
type = bond_type[i][m];
|
|
|
|
//Skip if bond was turned off
|
|
if (type <= 0) continue;
|
|
|
|
// map to find index n for tag
|
|
j = atom->map(atom->bond_atom[i][m]);
|
|
if (j == -1) error->one(FLERR, "Atom missing in BPM bond");
|
|
|
|
// Save orientation as pointing towards small tag
|
|
if (tag[i] < tag[j]) {
|
|
delx = x[i][0] - x[j][0];
|
|
dely = x[i][1] - x[j][1];
|
|
delz = x[i][2] - x[j][2];
|
|
} else {
|
|
delx = x[j][0] - x[i][0];
|
|
dely = x[j][1] - x[i][1];
|
|
delz = x[j][2] - x[i][2];
|
|
}
|
|
|
|
// Get closest image in case bonded with ghost
|
|
domain->minimum_image(FLERR, delx, dely, delz);
|
|
r = sqrt(delx * delx + dely * dely + delz * delz);
|
|
rinv = 1.0 / r;
|
|
|
|
fix_bond_history->update_atom_value(i, m, 0, r);
|
|
fix_bond_history->update_atom_value(i, m, 1, delx * rinv);
|
|
fix_bond_history->update_atom_value(i, m, 2, dely * rinv);
|
|
fix_bond_history->update_atom_value(i, m, 3, delz * rinv);
|
|
}
|
|
}
|
|
|
|
fix_bond_history->post_neighbor();
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Calculate forces using formulation in:
|
|
1) Y. Wang Acta Geotechnica 2009
|
|
2) P. Mora & Y. Wang Advances in Geomcomputing 2009
|
|
---------------------------------------------------------------------- */
|
|
|
|
double BondBPMRotational::elastic_forces(int i1, int i2, int type, double r_mag, double r0_mag,
|
|
double r_mag_inv, double * /*rhat*/, double *r, double *r0,
|
|
double *force1on2, double *torque1on2, double *torque2on1)
|
|
{
|
|
double breaking, temp, r0_dot_rb, c, gamma;
|
|
double psi, theta, cos_phi, sin_phi;
|
|
double mag_in_plane, mag_out_plane;
|
|
double Fs_mag, Tt_mag, Tb_mag;
|
|
|
|
double q1[4], q2[4];
|
|
double q2inv[4], mq[4], mqinv[4], qp21[4], q21[4], qtmp[4];
|
|
double rb[3], rb_x_r0[3], s[3], t[3];
|
|
double Fr, Fs[3], Fsp[3], F_rot[3], Ftmp[3];
|
|
double Ts[3], Tb[3], Tt[3], Tbp[3], Ttp[3], Tsp[3], T_rot[3], Ttmp[3];
|
|
|
|
double **quat = atom->quat;
|
|
double r0_mag_inv = 1.0 / r0_mag;
|
|
double Kr_type = Kr[type];
|
|
double Ks_type = Ks[type];
|
|
if (normalize_flag) {
|
|
Kr_type *= r0_mag_inv;
|
|
Ks_type *= r0_mag_inv;
|
|
}
|
|
|
|
q1[0] = quat[i1][0];
|
|
q1[1] = quat[i1][1];
|
|
q1[2] = quat[i1][2];
|
|
q1[3] = quat[i1][3];
|
|
|
|
q2[0] = quat[i2][0];
|
|
q2[1] = quat[i2][1];
|
|
q2[2] = quat[i2][2];
|
|
q2[3] = quat[i2][3];
|
|
|
|
// Calculate normal forces, rb = bond vector in particle 1's frame
|
|
MathExtra::qconjugate(q2, q2inv);
|
|
MathExtra::quatrotvec(q2inv, r, rb);
|
|
Fr = Kr_type * (r_mag - r0_mag);
|
|
|
|
MathExtra::scale3(Fr * r_mag_inv, rb, F_rot);
|
|
|
|
// Calculate forces due to tangential displacements (no rotation)
|
|
r0_dot_rb = MathExtra::dot3(r0, rb);
|
|
c = r0_dot_rb * r_mag_inv * r0_mag_inv;
|
|
gamma = acos_limit(c);
|
|
|
|
MathExtra::cross3(rb, r0, rb_x_r0);
|
|
MathExtra::cross3(rb, rb_x_r0, s);
|
|
MathExtra::norm3(s);
|
|
|
|
MathExtra::scale3(Ks_type * r_mag * gamma, s, Fs);
|
|
|
|
// Calculate torque due to tangential displacements
|
|
MathExtra::cross3(r0, rb, t);
|
|
MathExtra::norm3(t);
|
|
|
|
MathExtra::scale3(0.5 * r_mag * Ks_type * r_mag * gamma, t, Ts);
|
|
|
|
// Relative rotation force/torque
|
|
// Use representation of X'Y'Z' rotations from Wang, Mora 2009
|
|
temp = r_mag + rb[2];
|
|
if (temp < 0.0) temp = 0.0;
|
|
mq[0] = MY_SQRT2 * 0.5 * sqrt(temp * r_mag_inv);
|
|
|
|
temp = sqrt(rb[0] * rb[0] + rb[1] * rb[1]);
|
|
if (temp != 0.0) {
|
|
mq[1] = -MY_SQRT2 * 0.5 / temp;
|
|
temp = r_mag - rb[2];
|
|
if (temp < 0.0) temp = 0.0;
|
|
mq[1] *= sqrt(temp * r_mag_inv);
|
|
mq[2] = -mq[1];
|
|
mq[1] *= rb[1];
|
|
mq[2] *= rb[0];
|
|
} else {
|
|
// If aligned along z axis, x,y terms zero (r_mag-rb[2] = 0)
|
|
mq[1] = 0.0;
|
|
mq[2] = 0.0;
|
|
}
|
|
mq[3] = 0.0;
|
|
|
|
// qp21 = opposite of r^\circ_21 in Wang
|
|
// q21 = opposite of r_21 in Wang
|
|
MathExtra::quatquat(q2inv, q1, qp21);
|
|
MathExtra::qconjugate(mq, mqinv);
|
|
MathExtra::quatquat(mqinv, qp21, qtmp);
|
|
MathExtra::quatquat(qtmp, mq, q21);
|
|
|
|
temp = sqrt(q21[0] * q21[0] + q21[3] * q21[3]);
|
|
if (temp != 0.0) {
|
|
psi = 2.0 * acos_limit(q21[0] / temp);
|
|
} else {
|
|
psi = 0.0;
|
|
}
|
|
|
|
// Map negative rotations
|
|
if (q21[3] < 0.0) // sin = q21[3]/temp
|
|
psi = -psi;
|
|
|
|
if (q21[3] == 0.0) psi = 0.0;
|
|
|
|
c = q21[0] * q21[0] - q21[1] * q21[1] - q21[2] * q21[2] + q21[3] * q21[3];
|
|
theta = acos_limit(c);
|
|
|
|
// Separately calculate magnitude of quaternion in x-y and out of x-y planes
|
|
// to avoid dividing by zero
|
|
mag_out_plane = (q21[0] * q21[0] + q21[3] * q21[3]);
|
|
mag_in_plane = (q21[1] * q21[1] + q21[2] * q21[2]);
|
|
|
|
if (mag_in_plane == 0.0) {
|
|
// No rotation => no bending/shear torque or extra shear force
|
|
// achieve by setting cos/sin = 0
|
|
cos_phi = 0.0;
|
|
sin_phi = 0.0;
|
|
} else if (mag_out_plane == 0.0) {
|
|
// Calculate angle in plane
|
|
cos_phi = q21[2] / sqrt(mag_in_plane);
|
|
sin_phi = -q21[1] / sqrt(mag_in_plane);
|
|
} else {
|
|
// Default equations in Mora, Wang 2009
|
|
cos_phi = q21[1] * q21[3] + q21[0] * q21[2];
|
|
sin_phi = q21[2] * q21[3] - q21[0] * q21[1];
|
|
|
|
cos_phi /= sqrt(mag_out_plane * mag_in_plane);
|
|
sin_phi /= sqrt(mag_out_plane * mag_in_plane);
|
|
}
|
|
|
|
Tbp[0] = -Kb[type] * theta * sin_phi;
|
|
Tbp[1] = Kb[type] * theta * cos_phi;
|
|
Tbp[2] = 0.0;
|
|
|
|
Ttp[0] = 0.0;
|
|
Ttp[1] = 0.0;
|
|
Ttp[2] = Kt[type] * psi;
|
|
|
|
Fsp[0] = -0.5 * Ks_type * r_mag * theta * cos_phi;
|
|
Fsp[1] = -0.5 * Ks_type * r_mag * theta * sin_phi;
|
|
Fsp[2] = 0.0;
|
|
|
|
Tsp[0] = 0.25 * Ks_type * r_mag * r_mag * theta * sin_phi;
|
|
Tsp[1] = -0.25 * Ks_type * r_mag * r_mag * theta * cos_phi;
|
|
Tsp[2] = 0.0;
|
|
|
|
// Rotate forces/torques back to 1st particle's frame
|
|
|
|
MathExtra::quatrotvec(mq, Fsp, Ftmp);
|
|
MathExtra::quatrotvec(mq, Tsp, Ttmp);
|
|
for (int m = 0; m < 3; m++) {
|
|
Fs[m] += Ftmp[m];
|
|
Ts[m] += Ttmp[m];
|
|
}
|
|
|
|
MathExtra::quatrotvec(mq, Tbp, Tb);
|
|
MathExtra::quatrotvec(mq, Ttp, Tt);
|
|
|
|
// Sum forces and calculate magnitudes
|
|
F_rot[0] += Fs[0];
|
|
F_rot[1] += Fs[1];
|
|
F_rot[2] += Fs[2];
|
|
MathExtra::quatrotvec(q2, F_rot, force1on2);
|
|
|
|
T_rot[0] = Ts[0] + Tt[0] + Tb[0];
|
|
T_rot[1] = Ts[1] + Tt[1] + Tb[1];
|
|
T_rot[2] = Ts[2] + Tt[2] + Tb[2];
|
|
MathExtra::quatrotvec(q2, T_rot, torque1on2);
|
|
|
|
T_rot[0] = Ts[0] - Tt[0] - Tb[0];
|
|
T_rot[1] = Ts[1] - Tt[1] - Tb[1];
|
|
T_rot[2] = Ts[2] - Tt[2] - Tb[2];
|
|
MathExtra::quatrotvec(q2, T_rot, torque2on1);
|
|
|
|
Fs_mag = MathExtra::len3(Fs);
|
|
Tt_mag = MathExtra::len3(Tt);
|
|
Tb_mag = MathExtra::len3(Tb);
|
|
|
|
breaking = Fr / Fcr[type] + Fs_mag / Fcs[type] + Tb_mag / Tcb[type] + Tt_mag / Tct[type];
|
|
if (breaking < 0.0) breaking = 0.0;
|
|
|
|
return breaking;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Calculate damping using formulation in
|
|
Y. Wang, F. Alonso-Marroquin, W. Guo 2015
|
|
Note: n points towards 1 vs pointing towards 2
|
|
---------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::damping_forces(int i1, int i2, int type, double *rhat, double *r,
|
|
double *force1on2, double *torque1on2, double *torque2on1)
|
|
{
|
|
double v1dotr, v2dotr, w1dotr, w2dotr;
|
|
double s1[3], s2[3], tdamp[3], tmp[3];
|
|
double vn1[3], vn2[3], vt1[3], vt2[3], vroll[3];
|
|
double wxn1[3], wxn2[3], wn1[3], wn2[3];
|
|
|
|
double **v = atom->v;
|
|
double **omega = atom->omega;
|
|
|
|
// Damp normal velocity difference
|
|
v1dotr = MathExtra::dot3(v[i1], rhat);
|
|
v2dotr = MathExtra::dot3(v[i2], rhat);
|
|
|
|
MathExtra::scale3(v1dotr, rhat, vn1);
|
|
MathExtra::scale3(v2dotr, rhat, vn2);
|
|
|
|
MathExtra::sub3(vn1, vn2, tmp);
|
|
MathExtra::scale3(gnorm[type], tmp);
|
|
MathExtra::add3(force1on2, tmp, force1on2);
|
|
|
|
// Damp tangential objective velocities
|
|
MathExtra::sub3(v[i1], vn1, vt1);
|
|
MathExtra::sub3(v[i2], vn2, vt2);
|
|
|
|
MathExtra::sub3(vt2, vt1, tmp);
|
|
MathExtra::scale3(0.5, tmp);
|
|
|
|
MathExtra::cross3(omega[i1], r, s1);
|
|
MathExtra::scale3(-0.5, s1);
|
|
MathExtra::sub3(s1, tmp, s1); // Eq 12
|
|
|
|
MathExtra::cross3(omega[i2], r, s2);
|
|
MathExtra::scale3(0.5, s2);
|
|
MathExtra::add3(s2, tmp, s2); // Eq 13
|
|
|
|
MathExtra::sub3(s1, s2, tmp);
|
|
MathExtra::scale3(gslide[type], tmp);
|
|
MathExtra::add3(force1on2, tmp, force1on2);
|
|
|
|
// Apply corresponding torque
|
|
MathExtra::cross3(r, tmp, tdamp);
|
|
MathExtra::scale3(0.5, tdamp);
|
|
MathExtra::add3(torque1on2, tdamp, torque1on2);
|
|
MathExtra::add3(torque2on1, tdamp, torque2on1);
|
|
|
|
// Damp rolling
|
|
MathExtra::cross3(omega[i1], rhat, wxn1);
|
|
MathExtra::cross3(omega[i2], rhat, wxn2);
|
|
MathExtra::sub3(wxn1, wxn2, vroll); // Eq. 31
|
|
MathExtra::cross3(r, vroll, tdamp);
|
|
|
|
MathExtra::scale3(0.5 * groll[type], tdamp);
|
|
MathExtra::add3(torque1on2, tdamp, torque1on2);
|
|
MathExtra::scale3(-1.0, tdamp);
|
|
MathExtra::add3(torque2on1, tdamp, torque2on1);
|
|
|
|
// Damp twist
|
|
w1dotr = MathExtra::dot3(omega[i1], rhat);
|
|
w2dotr = MathExtra::dot3(omega[i2], rhat);
|
|
|
|
MathExtra::scale3(w1dotr, rhat, wn1);
|
|
MathExtra::scale3(w2dotr, rhat, wn2);
|
|
|
|
MathExtra::sub3(wn1, wn2, tdamp); // Eq. 38
|
|
MathExtra::scale3(0.5 * gtwist[type], tdamp);
|
|
MathExtra::add3(torque1on2, tdamp, torque1on2);
|
|
MathExtra::scale3(-1.0, tdamp);
|
|
MathExtra::add3(torque2on1, tdamp, torque2on1);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::compute(int eflag, int vflag)
|
|
{
|
|
if (!fix_bond_history->stored_flag) {
|
|
fix_bond_history->stored_flag = true;
|
|
store_data();
|
|
}
|
|
|
|
if (hybrid_flag) fix_bond_history->compress_history();
|
|
|
|
int i1, i2, itmp, n, type;
|
|
double r[3], r0[3], rhat[3];
|
|
double rsq, r0_mag, r_mag, r_mag_inv;
|
|
double breaking, smooth;
|
|
double force1on2[3], torque1on2[3], torque2on1[3];
|
|
|
|
ev_init(eflag, vflag);
|
|
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
double **torque = atom->torque;
|
|
tagint *tag = atom->tag;
|
|
int **bondlist = neighbor->bondlist;
|
|
int nbondlist = neighbor->nbondlist;
|
|
int nlocal = atom->nlocal;
|
|
int newton_bond = force->newton_bond;
|
|
|
|
double **bondstore = fix_bond_history->bondstore;
|
|
const bool allow_breaks = (update->setupflag == 0) && break_flag;
|
|
|
|
for (n = 0; n < nbondlist; n++) {
|
|
|
|
// skip bond if already broken
|
|
if (bondlist[n][2] <= 0) continue;
|
|
|
|
i1 = bondlist[n][0];
|
|
i2 = bondlist[n][1];
|
|
type = bondlist[n][2];
|
|
r0_mag = bondstore[n][0];
|
|
|
|
// Ensure pair is always ordered such that r0 points in
|
|
// a consistent direction and to ensure numerical operations
|
|
// are identical to minimize the possibility that a bond straddling
|
|
// an mpi grid (newton off) doesn't break on one proc but not the other
|
|
if (tag[i2] < tag[i1]) {
|
|
itmp = i1;
|
|
i1 = i2;
|
|
i2 = itmp;
|
|
}
|
|
|
|
// If bond hasn't been set - should be initialized to zero
|
|
if (r0_mag < EPSILON || std::isnan(r0_mag)) r0_mag = store_bond(n, i1, i2);
|
|
|
|
r0[0] = bondstore[n][1];
|
|
r0[1] = bondstore[n][2];
|
|
r0[2] = bondstore[n][3];
|
|
MathExtra::scale3(r0_mag, r0);
|
|
|
|
// Note this is the reverse of Mora & Wang
|
|
MathExtra::sub3(x[i1], x[i2], r);
|
|
|
|
rsq = MathExtra::lensq3(r);
|
|
r_mag = sqrt(rsq);
|
|
r_mag_inv = 1.0 / r_mag;
|
|
MathExtra::scale3(r_mag_inv, r, rhat);
|
|
|
|
// ------------------------------------------------------//
|
|
// Calculate forces, check if bond breaks
|
|
// ------------------------------------------------------//
|
|
|
|
breaking = elastic_forces(i1, i2, type, r_mag, r0_mag, r_mag_inv, rhat, r, r0, force1on2,
|
|
torque1on2, torque2on1);
|
|
|
|
if ((breaking >= 1.0) && allow_breaks) {
|
|
bondlist[n][2] = 0;
|
|
process_broken(i1, i2);
|
|
continue;
|
|
}
|
|
|
|
damping_forces(i1, i2, type, rhat, r, force1on2, torque1on2, torque2on1);
|
|
|
|
if (smooth_flag) {
|
|
smooth = breaking * breaking;
|
|
smooth = 1.0 - smooth * smooth;
|
|
} else {
|
|
smooth = 1.0;
|
|
}
|
|
|
|
// ------------------------------------------------------//
|
|
// Apply forces and torques to particles
|
|
// ------------------------------------------------------//
|
|
|
|
MathExtra::scale3(smooth, force1on2);
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] -= force1on2[0];
|
|
f[i1][1] -= force1on2[1];
|
|
f[i1][2] -= force1on2[2];
|
|
|
|
MathExtra::scale3(smooth, torque2on1);
|
|
torque[i1][0] += torque2on1[0];
|
|
torque[i1][1] += torque2on1[1];
|
|
torque[i1][2] += torque2on1[2];
|
|
}
|
|
|
|
if (newton_bond || i2 < nlocal) {
|
|
f[i2][0] += force1on2[0];
|
|
f[i2][1] += force1on2[1];
|
|
f[i2][2] += force1on2[2];
|
|
|
|
MathExtra::scale3(smooth, torque1on2);
|
|
torque[i2][0] += torque1on2[0];
|
|
torque[i2][1] += torque1on2[1];
|
|
torque[i2][2] += torque1on2[2];
|
|
}
|
|
|
|
if (evflag)
|
|
ev_tally_xyz(i1, i2, nlocal, newton_bond, 0.0, -force1on2[0], -force1on2[1],
|
|
-force1on2[2], r[0], r[1], r[2]);
|
|
}
|
|
|
|
if (hybrid_flag) fix_bond_history->uncompress_history();
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::allocate()
|
|
{
|
|
allocated = 1;
|
|
const int np1 = atom->nbondtypes + 1;
|
|
|
|
memory->create(Kr, np1, "bond:Kr");
|
|
memory->create(Ks, np1, "bond:Ks");
|
|
memory->create(Kt, np1, "bond:Kt");
|
|
memory->create(Kb, np1, "bond:Kb");
|
|
memory->create(Fcr, np1, "bond:Fcr");
|
|
memory->create(Fcs, np1, "bond:Fcs");
|
|
memory->create(Tct, np1, "bond:Tct");
|
|
memory->create(Tcb, np1, "bond:Tcb");
|
|
memory->create(gnorm, np1, "bond:gnorm");
|
|
memory->create(gslide, np1, "bond:gslide");
|
|
memory->create(groll, np1, "bond:groll");
|
|
memory->create(gtwist, np1, "bond:gtwist");
|
|
|
|
memory->create(setflag, np1, "bond:setflag");
|
|
for (int i = 1; i < np1; i++) setflag[i] = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more types
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 13) error->all(FLERR, "Incorrect args for bond coefficients" + utils::errorurl(21));
|
|
if (!allocated) allocate();
|
|
|
|
int ilo, ihi;
|
|
utils::bounds(FLERR, arg[0], 1, atom->nbondtypes, ilo, ihi, error);
|
|
|
|
double Kr_one = utils::numeric(FLERR, arg[1], false, lmp);
|
|
double Ks_one = utils::numeric(FLERR, arg[2], false, lmp);
|
|
double Kt_one = utils::numeric(FLERR, arg[3], false, lmp);
|
|
double Kb_one = utils::numeric(FLERR, arg[4], false, lmp);
|
|
double Fcr_one = utils::numeric(FLERR, arg[5], false, lmp);
|
|
double Fcs_one = utils::numeric(FLERR, arg[6], false, lmp);
|
|
double Tct_one = utils::numeric(FLERR, arg[7], false, lmp);
|
|
double Tcb_one = utils::numeric(FLERR, arg[8], false, lmp);
|
|
double gnorm_one = utils::numeric(FLERR, arg[9], false, lmp);
|
|
double gslide_one = utils::numeric(FLERR, arg[10], false, lmp);
|
|
double groll_one = utils::numeric(FLERR, arg[11], false, lmp);
|
|
double gtwist_one = utils::numeric(FLERR, arg[12], false, lmp);
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
Kr[i] = Kr_one;
|
|
Ks[i] = Ks_one;
|
|
Kt[i] = Kt_one;
|
|
Kb[i] = Kb_one;
|
|
Fcr[i] = Fcr_one;
|
|
Fcs[i] = Fcs_one;
|
|
Tct[i] = Tct_one;
|
|
Tcb[i] = Tcb_one;
|
|
gnorm[i] = gnorm_one;
|
|
gslide[i] = gslide_one;
|
|
groll[i] = groll_one;
|
|
gtwist[i] = gtwist_one;
|
|
setflag[i] = 1;
|
|
count++;
|
|
|
|
if (Fcr[i] / Kr[i] > max_stretch) max_stretch = Fcr[i] / Kr[i];
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR, "Incorrect args for bond coefficients" + utils::errorurl(21));
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
check for correct settings and create fix
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::init_style()
|
|
{
|
|
BondBPM::init_style();
|
|
|
|
if (!atom->quat_flag || !atom->radius_flag || !atom->omega_flag)
|
|
error->all(FLERR, "Bond bpm/rotational requires atom style bpm/sphere");
|
|
if (comm->ghost_velocity == 0)
|
|
error->all(FLERR, "Bond bpm/rotational requires ghost atoms store velocity");
|
|
|
|
if (domain->dimension == 2)
|
|
error->warning(FLERR, "Bond style bpm/rotational not intended for 2d use");
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::settings(int narg, char **arg)
|
|
{
|
|
BondBPM::settings(narg, arg);
|
|
|
|
int iarg;
|
|
for (std::size_t i = 0; i < leftover_iarg.size(); i++) {
|
|
iarg = leftover_iarg[i];
|
|
if (strcmp(arg[iarg], "smooth") == 0) {
|
|
if (iarg + 1 > narg) error->all(FLERR, "Illegal bond bpm command, missing option for smooth");
|
|
smooth_flag = utils::logical(FLERR, arg[iarg + 1], false, lmp);
|
|
i += 1;
|
|
} else if (strcmp(arg[iarg], "normalize") == 0) {
|
|
if (iarg + 1 > narg) error->all(FLERR, "Illegal bond bpm command, missing option for normalize");
|
|
normalize_flag = utils::logical(FLERR, arg[iarg + 1], false, lmp);
|
|
i += 1;
|
|
} else {
|
|
error->all(FLERR, "Illegal bond bpm command, invalid argument {}", arg[iarg]);
|
|
}
|
|
}
|
|
|
|
if (smooth_flag && !break_flag)
|
|
error->all(FLERR, "Illegal bond bpm command, must turn off smoothing with break no option");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::write_restart(FILE *fp)
|
|
{
|
|
BondBPM::write_restart(fp);
|
|
write_restart_settings(fp);
|
|
|
|
fwrite(&Kr[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Ks[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Kt[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Kb[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Fcr[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Fcs[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Tct[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&Tcb[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&gnorm[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&gslide[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(&groll[1], sizeof(double), atom->nbondtypes, fp);
|
|
fwrite(>wist[1], sizeof(double), atom->nbondtypes, fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::read_restart(FILE *fp)
|
|
{
|
|
BondBPM::read_restart(fp);
|
|
read_restart_settings(fp);
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
utils::sfread(FLERR, &Kr[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Ks[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Kt[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Kb[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Fcr[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Fcs[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Tct[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &Tcb[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &gnorm[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &gslide[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, &groll[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
utils::sfread(FLERR, >wist[1], sizeof(double), atom->nbondtypes, fp, nullptr, error);
|
|
}
|
|
MPI_Bcast(&Kr[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Ks[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Kt[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Kb[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Fcr[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Fcs[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Tct[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&Tcb[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&gnorm[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&gslide[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(&groll[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
MPI_Bcast(>wist[1], atom->nbondtypes, MPI_DOUBLE, 0, world);
|
|
|
|
for (int i = 1; i <= atom->nbondtypes; i++) setflag[i] = 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::write_restart_settings(FILE *fp)
|
|
{
|
|
fwrite(&smooth_flag, sizeof(int), 1, fp);
|
|
fwrite(&normalize_flag, sizeof(int), 1, fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads from restart file, bcasts
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondBPMRotational::read_restart_settings(FILE *fp)
|
|
{
|
|
if (comm->me == 0) {
|
|
utils::sfread(FLERR, &smooth_flag, sizeof(int), 1, fp, nullptr, error);
|
|
utils::sfread(FLERR, &normalize_flag, sizeof(int), 1, fp, nullptr, error);
|
|
}
|
|
MPI_Bcast(&smooth_flag, 1, MPI_INT, 0, world);
|
|
MPI_Bcast(&normalize_flag, 1, MPI_INT, 0, world);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double BondBPMRotational::single(int type, double rsq, int i, int j, double &fforce)
|
|
{
|
|
if (type <= 0) return 0.0;
|
|
|
|
int flipped = 0;
|
|
if (atom->tag[j] < atom->tag[i]) {
|
|
int itmp = i;
|
|
i = j;
|
|
j = itmp;
|
|
flipped = 1;
|
|
}
|
|
|
|
double r0_mag, r_mag, r_mag_inv;
|
|
double r0[3], r[3], rhat[3];
|
|
for (int n = 0; n < atom->num_bond[i]; n++) {
|
|
if (atom->bond_atom[i][n] == atom->tag[j]) {
|
|
r0_mag = fix_bond_history->get_atom_value(i, n, 0);
|
|
r0[0] = fix_bond_history->get_atom_value(i, n, 1);
|
|
r0[1] = fix_bond_history->get_atom_value(i, n, 2);
|
|
r0[2] = fix_bond_history->get_atom_value(i, n, 3);
|
|
}
|
|
}
|
|
|
|
double **x = atom->x;
|
|
MathExtra::scale3(r0_mag, r0);
|
|
MathExtra::sub3(x[i], x[j], r);
|
|
|
|
r_mag = sqrt(rsq);
|
|
r_mag_inv = 1.0 / r_mag;
|
|
MathExtra::scale3(r_mag_inv, r, rhat);
|
|
|
|
double force1on2[3], torque1on2[3], torque2on1[3];
|
|
double breaking = elastic_forces(i, j, type, r_mag, r0_mag, r_mag_inv, rhat, r, r0, force1on2,
|
|
torque1on2, torque2on1);
|
|
damping_forces(i, j, type, rhat, r, force1on2, torque1on2, torque2on1);
|
|
fforce = MathExtra::dot3(force1on2, rhat);
|
|
fforce *= -1;
|
|
|
|
double smooth = 1.0;
|
|
if (smooth_flag) {
|
|
smooth = breaking * breaking;
|
|
smooth = 1.0 - smooth * smooth;
|
|
fforce *= smooth;
|
|
}
|
|
|
|
// set single_extra quantities
|
|
|
|
MathExtra::scale3(smooth, force1on2);
|
|
svector[0] = r0_mag;
|
|
if (flipped) {
|
|
svector[1] = -r0[0];
|
|
svector[2] = -r0[1];
|
|
svector[3] = -r0[2];
|
|
svector[4] = force1on2[0];
|
|
svector[5] = force1on2[1];
|
|
svector[6] = force1on2[2];
|
|
} else {
|
|
svector[1] = r0[0];
|
|
svector[2] = r0[1];
|
|
svector[3] = r0[2];
|
|
svector[4] = -force1on2[0];
|
|
svector[5] = -force1on2[1];
|
|
svector[6] = -force1on2[2];
|
|
}
|
|
|
|
return 0.0;
|
|
}
|