Files
lammps/src/DIPOLE/angle_dipole.cpp

278 lines
8.6 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mario Orsi & Wei Ding (QMUL), m.orsi@qmul.ac.uk
------------------------------------------------------------------------- */
#include "angle_dipole.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "neighbor.h"
#include <cmath>
using namespace LAMMPS_NS;
using namespace MathConst;
static constexpr double SMALL = 1.0e-100;
/* ---------------------------------------------------------------------- */
AngleDipole::AngleDipole(LAMMPS *lmp) : Angle(lmp)
{
k = nullptr;
gamma0 = nullptr;
}
/* ---------------------------------------------------------------------- */
AngleDipole::~AngleDipole()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(gamma0);
}
}
/* ---------------------------------------------------------------------- */
void AngleDipole::compute(int eflag, int vflag)
{
int iRef, iDip, iDummy, n, type;
double delx, dely, delz;
double eangle, tangle, fi[3], fj[3];
double r, cosGamma, deltaGamma, kdg, rmu;
eangle = 0.0;
ev_init(eflag, vflag);
double **x = atom->x; // position vector
double **mu = atom->mu; // point-dipole components and moment magnitude
double **torque = atom->torque;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
double **f = atom->f;
double delTx, delTy, delTz;
double fx, fy, fz, fmod, fmod_len, len;
if (!newton_bond) error->all(FLERR, "'newton' flag for bonded interactions must be 'on'");
for (n = 0; n < nanglelist; n++) {
iDip = anglelist[n][0]; // dipole whose orientation is to be restrained
iRef = anglelist[n][1]; // reference atom toward which dipole will point
iDummy = anglelist[n][2]; // dummy atom - irrelevant to the interaction
type = anglelist[n][3];
delx = x[iRef][0] - x[iDip][0];
dely = x[iRef][1] - x[iDip][1];
delz = x[iRef][2] - x[iDip][2];
r = sqrt(delx * delx + dely * dely + delz * delz);
if (r < SMALL) continue;
rmu = r * mu[iDip][3];
cosGamma = (mu[iDip][0] * delx + mu[iDip][1] * dely + mu[iDip][2] * delz) / rmu;
deltaGamma = cosGamma - cos(gamma0[type]);
kdg = k[type] * deltaGamma;
if (eflag) eangle = kdg * deltaGamma; // energy
tangle = 2.0 * kdg / rmu;
delTx = tangle * (dely * mu[iDip][2] - delz * mu[iDip][1]);
delTy = tangle * (delz * mu[iDip][0] - delx * mu[iDip][2]);
delTz = tangle * (delx * mu[iDip][1] - dely * mu[iDip][0]);
torque[iDip][0] += delTx;
torque[iDip][1] += delTy;
torque[iDip][2] += delTz;
// Force couple that counterbalances dipolar torque
fx = dely * delTz - delz * delTy; // direction (fi): - r x (-T)
fy = delz * delTx - delx * delTz;
fz = delx * delTy - dely * delTx;
fmod = sqrt(delTx * delTx + delTy * delTy + delTz * delTz) / r; // magnitude
len = sqrt(fx * fx + fy * fy + fz * fz);
if (len < SMALL) continue;
fmod_len = fmod / len;
fi[0] = fx * fmod_len;
fi[1] = fy * fmod_len;
fi[2] = fz * fmod_len;
fj[0] = -fi[0];
fj[1] = -fi[1];
fj[2] = -fi[2];
f[iDip][0] += fj[0];
f[iDip][1] += fj[1];
f[iDip][2] += fj[2];
f[iRef][0] += fi[0];
f[iRef][1] += fi[1];
f[iRef][2] += fi[2];
if (evflag) // virial = rij.fi = 0 (fj = -fi & fk = 0)
ev_tally(iRef, iDip, iDummy, nlocal, newton_bond, eangle, fj, fi, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0);
}
}
/* ---------------------------------------------------------------------- */
void AngleDipole::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(k, n + 1, "angle:k");
memory->create(gamma0, n + 1, "angle:gamma0");
memory->create(setflag, n + 1, "angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleDipole::coeff(int narg, char **arg)
{
if (narg != 3) error->all(FLERR, "Incorrect args for angle coefficients" + utils::errorurl(21));
if (!allocated) allocate();
int ilo, ihi;
utils::bounds(FLERR, arg[0], 1, atom->nangletypes, ilo, ihi, error);
double k_one = utils::numeric(FLERR, arg[1], false, lmp);
double gamma0_one = utils::numeric(FLERR, arg[2], false, lmp);
// convert gamma0 from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
gamma0[i] = gamma0_one / 180.0 * MY_PI;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR, "Incorrect args for angle coefficients" + utils::errorurl(21));
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleDipole::init_style()
{
if (!atom->mu_flag || !atom->torque_flag)
error->all(FLERR, "Angle style dipole requires atom attributes mu and torque");
}
/* ----------------------------------------------------------------------
used by SHAKE
------------------------------------------------------------------------- */
double AngleDipole::equilibrium_angle(int i)
{
return gamma0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleDipole::write_restart(FILE *fp)
{
fwrite(&k[1], sizeof(double), atom->nangletypes, fp);
fwrite(&gamma0[1], sizeof(double), atom->nangletypes, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleDipole::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
utils::sfread(FLERR, &k[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
utils::sfread(FLERR, &gamma0[1], sizeof(double), atom->nangletypes, fp, nullptr, error);
}
MPI_Bcast(&k[1], atom->nangletypes, MPI_DOUBLE, 0, world);
MPI_Bcast(&gamma0[1], atom->nangletypes, MPI_DOUBLE, 0, world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleDipole::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++) fprintf(fp, "%d %g %g\n", i, k[i], gamma0[i]);
}
/* ----------------------------------------------------------------------
used by ComputeAngleLocal
------------------------------------------------------------------------- */
double AngleDipole::single(int type, int iRef, int iDip, int /*iDummy*/)
{
double **x = atom->x; // position vector
double **mu = atom->mu; // point-dipole components and moment magnitude
double delx = x[iRef][0] - x[iDip][0];
double dely = x[iRef][1] - x[iDip][1];
double delz = x[iRef][2] - x[iDip][2];
domain->minimum_image(FLERR, delx, dely, delz);
double r = sqrt(delx * delx + dely * dely + delz * delz);
if (r < SMALL) return 0.0;
double rmu = r * mu[iDip][3];
double cosGamma = (mu[iDip][0] * delx + mu[iDip][1] * dely + mu[iDip][2] * delz) / rmu;
double deltaGamma = cosGamma - cos(gamma0[type]);
double kdg = k[type] * deltaGamma;
return kdg * deltaGamma; // energy
}
/* ----------------------------------------------------------------------
return ptr to internal members upon request
------------------------------------------------------------------------ */
void *AngleDipole::extract(const char *str, int &dim)
{
dim = 1;
if (strcmp(str, "k") == 0) return (void *) k;
if (strcmp(str, "gamma0") == 0) return (void *) gamma0;
return nullptr;
}