Files
lammps/src/SPIN/fix_precession_spin.cpp
2018-08-24 10:42:08 -06:00

283 lines
7.6 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------
Contributing authors: Julien Tranchida (SNL)
Aidan Thompson (SNL)
Please cite the related publication:
Tranchida, J., Plimpton, S. J., Thibaudeau, P., & Thompson, A. P. (2018).
Massively parallel symplectic algorithm for coupled magnetic spin dynamics
and molecular dynamics. Journal of Computational Physics.
------------------------------------------------------------------------- */
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "atom.h"
#include "domain.h"
#include "error.h"
#include "fix_precession_spin.h"
#include "force.h"
#include "input.h"
#include "math_const.h"
#include "memory.h"
#include "modify.h"
#include "respa.h"
#include "update.h"
#include "variable.h"
using namespace LAMMPS_NS;
using namespace FixConst;
using namespace MathConst;
enum{CONSTANT,EQUAL};
/* ---------------------------------------------------------------------- */
FixPrecessionSpin::FixPrecessionSpin(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg)
{
if (narg < 7) error->all(FLERR,"Illegal precession/spin command");
// magnetic interactions coded for cartesian coordinates
hbar = force->hplanck/MY_2PI;
dynamic_group_allow = 1;
scalar_flag = 1;
global_freq = 1;
extscalar = 1;
respa_level_support = 1;
ilevel_respa = 0;
magstr = NULL;
magfieldstyle = CONSTANT;
H_field = 0.0;
nhx = nhy = nhz = 0.0;
hx = hy = hz = 0.0;
Ka = 0.0;
nax = nay = naz = 0.0;
Kax = Kay = Kaz = 0.0;
zeeman_flag = aniso_flag = 0;
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"zeeman") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
zeeman_flag = 1;
H_field = force->numeric(FLERR,arg[iarg+1]);
nhx = force->numeric(FLERR,arg[iarg+2]);
nhy = force->numeric(FLERR,arg[iarg+3]);
nhz = force->numeric(FLERR,arg[iarg+4]);
iarg += 5;
} else if (strcmp(arg[iarg],"anisotropy") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal fix precession/spin command");
aniso_flag = 1;
Ka = force->numeric(FLERR,arg[iarg+1]);
nax = force->numeric(FLERR,arg[iarg+2]);
nay = force->numeric(FLERR,arg[iarg+3]);
naz = force->numeric(FLERR,arg[iarg+4]);
iarg += 5;
} else error->all(FLERR,"Illegal precession/spin command");
}
degree2rad = MY_PI/180.0;
time_origin = update->ntimestep;
eflag = 0;
emag = 0.0;
}
/* ---------------------------------------------------------------------- */
FixPrecessionSpin::~FixPrecessionSpin()
{
delete [] magstr;
}
/* ---------------------------------------------------------------------- */
int FixPrecessionSpin::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= THERMO_ENERGY;
mask |= POST_FORCE_RESPA;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::init()
{
const double hbar = force->hplanck/MY_2PI; // eV/(rad.THz)
const double mub = 5.78901e-5; // in eV/T
const double gyro = mub/hbar; // in rad.THz/T
H_field *= gyro; // in rad.THz
Ka /= hbar; // in rad.THz
if (strstr(update->integrate_style,"respa")) {
ilevel_respa = ((Respa *) update->integrate)->nlevels-1;
if (respa_level >= 0) ilevel_respa = MIN(respa_level,ilevel_respa);
}
if (magstr) {
magvar = input->variable->find(magstr);
if (magvar < 0)
error->all(FLERR,"Illegal precession/spin command");
if (!input->variable->equalstyle(magvar))
error->all(FLERR,"Illegal precession/spin command");
}
varflag = CONSTANT;
if (magfieldstyle != CONSTANT) varflag = EQUAL;
// set magnetic field components
if (varflag == CONSTANT) set_magneticprecession();
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::setup(int vflag)
{
if (strstr(update->integrate_style,"verlet"))
post_force(vflag);
else {
((Respa *) update->integrate)->copy_flevel_f(ilevel_respa);
post_force_respa(vflag,ilevel_respa,0);
((Respa *) update->integrate)->copy_f_flevel(ilevel_respa);
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::post_force(int /*vflag*/)
{
// update mag field with time (potential improvement)
if (varflag != CONSTANT) {
modify->clearstep_compute();
modify->addstep_compute(update->ntimestep + 1);
set_magneticprecession(); // update mag. field if time-dep.
}
double **sp = atom->sp;
double **fm = atom->fm;
double spi[3], fmi[3];
const int nlocal = atom->nlocal;
eflag = 0;
emag = 0.0;
for (int i = 0; i < nlocal; i++) {
spi[0] = sp[i][0];
spi[1] = sp[i][1];
spi[2] = sp[i][2];
fmi[0] = fmi[1] = fmi[2] = 0.0;
if (zeeman_flag) { // compute Zeeman interaction
compute_zeeman(i,fmi);
emag -= (spi[0]*fmi[0] + spi[1]*fmi[1] + spi[2]*fmi[2]);
}
if (aniso_flag) { // compute magnetic anisotropy
compute_anisotropy(spi,fmi);
emag -= (spi[0]*fmi[0] + spi[1]*fmi[1] + spi[2]*fmi[2]);
}
fm[i][0] += fmi[0];
fm[i][1] += fmi[1];
fm[i][2] += fmi[2];
}
emag *= hbar;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_single_precession(int i, double spi[3], double fmi[3])
{
if (zeeman_flag) {
compute_zeeman(i,fmi);
}
if (aniso_flag) {
compute_anisotropy(spi,fmi);
}
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_zeeman(int i, double fmi[3])
{
double **sp = atom->sp;
fmi[0] -= sp[i][3]*hx;
fmi[1] -= sp[i][3]*hy;
fmi[2] -= sp[i][3]*hz;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::compute_anisotropy(double spi[3], double fmi[3])
{
double scalar = nax*spi[0] + nay*spi[1] + naz*spi[2];
fmi[0] += scalar*Kax;
fmi[1] += scalar*Kay;
fmi[2] += scalar*Kaz;
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
if (ilevel == ilevel_respa) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixPrecessionSpin::set_magneticprecession()
{
if (zeeman_flag) {
hx = H_field*nhx;
hy = H_field*nhy;
hz = H_field*nhz;
}
if (aniso_flag) {
Kax = 2.0*Ka*nax;
Kay = 2.0*Ka*nay;
Kaz = 2.0*Ka*naz;
}
}
/* ----------------------------------------------------------------------
potential energy in magnetic field
------------------------------------------------------------------------- */
double FixPrecessionSpin::compute_scalar()
{
// only sum across procs one time
if (eflag == 0) {
MPI_Allreduce(&emag,&emag_all,1,MPI_DOUBLE,MPI_SUM,world);
eflag = 1;
}
return emag_all;
}