Files
lammps/doc/src/fix_nvt_sphere.rst

160 lines
5.9 KiB
ReStructuredText

.. index:: fix nvt/sphere
.. index:: fix nvt/sphere/omp
fix nvt/sphere command
======================
Accelerator Variants: *nvt/sphere/omp*
Syntax
""""""
.. code-block:: LAMMPS
fix ID group-ID nvt/sphere keyword value ...
* ID, group-ID are documented in :doc:`fix <fix>` command
* nvt/sphere = style name of this fix command
* zero or more keyword/value pairs may be appended
* keyword = *disc*
.. parsed-literal::
*disc* value = none = treat particles as 2d discs, not spheres
* NOTE: additional thermostat and dipole related keyword/value pairs from the :doc:`fix nvt <fix_nh>` command can be appended
Examples
""""""""
.. code-block:: LAMMPS
fix 1 all nvt/sphere temp 300.0 300.0 100.0
fix 1 all nvt/sphere temp 300.0 300.0 100.0 disc
fix 1 all nvt/sphere temp 300.0 300.0 100.0 drag 0.2
fix 1 all nvt/sphere temp 300.0 300.0 100.0 update dipole
Description
"""""""""""
Perform constant NVT integration to update position, velocity, and
angular velocity each timestep for finite-size spherical particles in
the group using a Nose/Hoover temperature thermostat. V is volume; T
is temperature. This creates a system trajectory consistent with the
canonical ensemble.
This fix differs from the :doc:`fix nvt <fix_nh>` command, which
assumes point particles and only updates their position and velocity.
The thermostat is applied to both the translational and rotational
degrees of freedom for the spherical particles, assuming a compute is
used which calculates a temperature that includes the rotational
degrees of freedom (see below). The translational degrees of freedom
can also have a bias velocity removed from them before thermostatting
takes place; see the description below.
If the *disc* keyword is used, then each particle is treated as a 2d
disc (circle) instead of as a sphere. This is only possible for 2d
simulations, as defined by the :doc:`dimension <dimension>` keyword.
The only difference between discs and spheres in this context is their
moment of inertia, as used in the time integration.
Additional parameters affecting the thermostat are specified by
keywords and values documented with the :doc:`fix nvt <fix_nh>`
command. See, for example, discussion of the *temp* and *drag*
keywords.
This fix computes a temperature each timestep. To do this, the fix
creates its own compute of style "temp/sphere", as if this command
had been issued:
.. code-block:: LAMMPS
compute fix-ID_temp group-ID temp/sphere
See the :doc:`compute temp/sphere <compute_temp_sphere>` command for
details. Note that the ID of the new compute is the fix-ID +
underscore + "temp", and the group for the new compute is the same as
the fix group.
Note that this is NOT the compute used by thermodynamic output (see
the :doc:`thermo_style <thermo_style>` command) with ID =
*thermo_temp*. This means you can change the attributes of this fix's
temperature (e.g. its degrees-of-freedom) via the :doc:`compute_modify
<compute_modify>` command or print this temperature during
thermodynamic output via the :doc:`thermo_style custom <thermo_style>`
command using the appropriate compute-ID. It also means that changing
attributes of *thermo_temp* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
----------
.. include:: accel_styles.rst
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
This fix writes the state of the Nose/Hoover thermostat to
:doc:`binary restart files <restart>`. See the :doc:`read_restart
<read_restart>` command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.
The :doc:`fix_modify <fix_modify>` *temp* option is supported by this
fix. You can use it to assign a :doc:`compute <compute>` you have
defined to this fix which will be used in its thermostatting
procedure.
The cumulative energy change in the system imposed by this fix is
included in the :doc:`thermodynamic output <thermo_style>` keywords
*ecouple* and *econserve*. See the :doc:`thermo_style <thermo_style>`
doc page for details.
This fix computes the same global scalar and global vector of
quantities as does the :doc:`fix nvt <fix_nh>` command.
This fix can ramp its target temperature over multiple runs, using the
*start* and *stop* keywords of the :doc:`run <run>` command. See the
:doc:`run <run>` command for details of how to do this.
This fix is not invoked during :doc:`energy minimization <minimize>`.
Restrictions
""""""""""""
This fix requires that atoms store torque and angular velocity (omega)
and a radius as defined by the :doc:`atom_style sphere <atom_style>`
command.
All particles in the group must be finite-size spheres. They cannot
be point particles.
Use of the *disc* keyword is only allowed for 2d simulations, as
defined by the :doc:`dimension <dimension>` keyword.
Related commands
""""""""""""""""
:doc:`fix nvt <fix_nh>`, :doc:`fix nve_sphere <fix_nve_sphere>`,
:doc:`fix nvt_asphere <fix_nvt_asphere>`, :doc:`fix npt_sphere
<fix_npt_sphere>`, :doc:`fix_modify <fix_modify>`
Default
"""""""
none